on adapte le code à alarmclock (simplification), changement des channels de status/command

This commit is contained in:
Julien Cabillot 2017-04-24 01:57:17 +02:00 committed by Cabillot Julien
parent 9b1311d437
commit dcafb54c8e
4 changed files with 20 additions and 479 deletions

View File

@ -7,25 +7,12 @@
#include "alarmclock.h"
# TODO : tout reste à faire, ceci est la copie de mqttfastledmenu à adapter
// LED
// En déplaçant ces vars dans le .h + init dans le setup, cylon crash au moment du premier retour ?!
float brightness = LED_BRIGHTNESS_DEFAULT;
int color = LED_COLOR_DEFAULT;
int speed = LED_SPEED_DEFAULT;
CRGB leds[LED_NUM];
String ledEffect = LED_EFFECT_ERROR;
boolean ledState = false;
// WIFI
WiFiClient espClient;
// MQTT
char message_buff[100];
PubSubClient client(espClient);
void setup()
{
Serial.begin(SERIAL_SPEED);
@ -38,8 +25,6 @@ void setup()
/*
brightness = LED_BRIGHTNESS_DEFAULT;
color = LED_COLOR_DEFAULT;
speed = LED_SPEED_DEFAULT;
ledEffect = LED_EFFECT_ERROR;
ledState = false;
*/
@ -47,11 +32,6 @@ void setup()
ledBlackAll();
FastLED.setBrightness(brightness);
//////////////////////////////// ColorPalette ///////////////////////////////
currentPalette = RainbowColors_p;
currentBlending = LINEARBLEND;
//////////////////////////////// ColorPalette ///////////////////////////////
// MQTT
client.setServer(MQTT_SERVER, MQTT_PORT);
client.setCallback(callbackMQTT);
@ -98,16 +78,12 @@ void testConnectMQTT()
if (client.connect("ESP8266Client", MQTT_USER, MQTT_PASS)) {
Serial.print("OK\nSend Current State");
mqttSendState();
mqttSendSpeedState();
mqttSendBrightnessState();
mqttSendEffectState();
mqttSendColorState();
Serial.print("OK\nSubscribe");
client.subscribe(MQTT_LED_COMMAND);
client.subscribe(MQTT_LED_EFFECT_COMMAND);
client.subscribe(MQTT_LED_BRIGHTNESS_COMMAND);
client.subscribe(MQTT_LED_SPEED_COMMAND);
client.subscribe(MQTT_LED_COLOR_COMMAND);
Serial.println(" OK");
@ -143,11 +119,6 @@ void callbackMQTT(char* topic, byte* payload, unsigned int length)
ledBlackAll();
}
mqttSendState();
} else if (stopic == MQTT_LED_EFFECT_COMMAND) {
// Si on ne repasse pas tout à noir, cela peut faire des effets surprenants
ledBlackAll();
ledEffect = msgString;
mqttSendEffectState();
} else if (stopic == MQTT_LED_BRIGHTNESS_COMMAND) {
brightness = msgString.toInt();
FastLED.setBrightness(brightness);
@ -160,9 +131,6 @@ void callbackMQTT(char* topic, byte* payload, unsigned int length)
color=((red <<16)|(green <<8)|blue);
mqttSendColorState();
} else if (stopic == MQTT_LED_SPEED_COMMAND) {
speed = msgString.toInt();
mqttSendSpeedState();
}
}
@ -171,13 +139,6 @@ void mqttSendState()
client.publish(MQTT_LED_STATE, (ledState) ? "ON": "OFF", true);
}
void mqttSendEffectState()
{
char buff[ledEffect.length() + 1];
ledEffect.toCharArray(buff, ledEffect.length() + 1);
client.publish(MQTT_LED_EFFECT_STATE, buff, true);
}
void mqttSendBrightnessState()
{
char buff[4];
@ -185,13 +146,6 @@ void mqttSendBrightnessState()
client.publish(MQTT_LED_BRIGHTNESS_STATE, buff, true);
}
void mqttSendSpeedState()
{
char buff[4];
itoa(speed, buff, 10);
client.publish(MQTT_LED_SPEED_STATE, buff, true);
}
void mqttSendColorState()
{
int red = color>>16 & 0xFF;
@ -213,95 +167,6 @@ void ledBlackAll()
FastLED.show();
}
/**
* Effet Cylon : défilement d'une simple led sur le strip aller/retour.
* Pour faire plus sympas on ajoute une lueur autour, avec une lumière atténué.
*/
void ledCylon()
{
for (int i = 0; i < LED_NUM; i++) {
client.loop();
if (ledEffect != LED_EFFECT_CYLON) {
return;
}
if ((i - 3) >= 0) {
leds[i - 3] = CRGB::Black;
}
if ((i - 2) >= 0) {
/*
* Se lit 128/256 d'intensité lumineuse actuelle
* https://github.com/FastLED/FastLED/wiki/Pixel-reference#dimming-and-brightening-colors
*/
leds[i - 2] = color;
leds[i - 2].fadeLightBy(220);
}
if ((i - 1) >= 0) {
leds[i - 1] = color;
leds[i - 1].fadeLightBy(200);
}
leds[i] = color;
if ((i + 1) <= LED_NUM) {
leds[i + 1] = color;
// Je suis volontairement un peu moins puissant sur l'avant
// pour donner un effet de trainée sur l'arrière
leds[i + 1].fadeLightBy(249);
}
FastLED.delay(1000 / speed);
}
// Il faut nettoyer certaines cases avant la prochaine loop
if ((LED_NUM - 2) >= 0) {
leds[LED_NUM - 2] = color;
leds[LED_NUM - 2].fadeLightBy(220);
}
if ((LED_NUM - 1) >= 0 ) {
leds[LED_NUM - 1] = CRGB::Black;
}
FastLED.show();
// led[0] et led[255] sont gérées par la loop précédante
for (int i = LED_NUM - 1; i >= 0; i--) {
client.loop();
if (ledEffect != LED_EFFECT_CYLON) {
return;
}
if ((i - 1) >= 0) {
leds[i - 1] = color;
leds[i - 1].fadeLightBy(249);
}
leds[i] = color;
if ((i + 1) <= LED_NUM) {
leds[i + 1] = color;
leds[i + 1].fadeLightBy(200);
}
if ((i + 2) <= LED_NUM) {
leds[i + 2] = color;
leds[i + 2].fadeLightBy(220);
}
if ((i + 3) <= LED_NUM) {
leds[i + 3] = CRGB::Black;
}
FastLED.delay(1000 / speed);
}
// Il faut nettoyer certaines cases avant la prochaine loop
if (1 <= LED_NUM) {
leds[1] = color;
leds[1].fadeLightBy(220);
}
if (2 <= LED_NUM) {
leds[2] = CRGB::Black;
}
FastLED.show();
}
/**
* Utilise pour indiquer une erreur sur la reception de l'effet.
*/
@ -315,7 +180,7 @@ void ledError()
}
}
FastLED.delay(1000 / speed);
FastLED.delay(1000);
}
/**
@ -331,183 +196,11 @@ void ledFullColor()
//float breath = (exp(sin(millis() / 2000.0 * map(speed, 0, 255, 50, 300)/100 * PI)) - 0.3678794) * 108.4;
float breath = (exp(sin(millis() / 4000.0 * PI)) - 0.3678794) * 108.4;
// J'ai essayé de mapper breath sur 3;brightness pour ne pas eteindre les leds,
// mais l'effet est plus saccadé
fill_solid(leds, LED_NUM, color);
FastLED.setBrightness(breath);
FastLED.show();
}
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
void ledColorPattern()
{
ChangePalettePeriodically();
static uint8_t startIndex = 0;
startIndex = startIndex + 1; /* motion speed */
FillLEDsFromPaletteColors(startIndex);
FastLED.delay(1000 / speed);
}
void FillLEDsFromPaletteColors(uint8_t colorIndex)
{
uint8_t brightness = 255;
for( int i = 0; i < LED_NUM; i++) {
leds[i] = ColorFromPalette(
currentPalette,
colorIndex,
brightness,
currentBlending
);
colorIndex += 3;
}
}
// There are several different palettes of colors demonstrated here.
//
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
//
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly. All are shown here.
void ChangePalettePeriodically()
{
uint8_t secondHand = (millis() / 1000) % 60;
static uint8_t lastSecond = 99;
if( lastSecond != secondHand) {
lastSecond = secondHand;
/*
if (secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; }
if (secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; }
if (secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; }
if (secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
*/
if (secondHand == 0) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 10) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 30) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 40) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
}
}
/*
// This function fills the palette with totally random colors.
void SetupTotallyRandomPalette()
{
for (int i = 0; i < 16; i++) {
currentPalette[i] = CHSV(random8(), 255, random8());
}
}
*/
// This function sets up a palette of black and white stripes,
// using code. Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
void SetupBlackAndWhiteStripedPalette()
{
// 'black out' all 16 palette entries...
fill_solid(currentPalette, 16, CRGB::Black);
// and set every fourth one to white.
currentPalette[0] = CRGB::White;
currentPalette[4] = CRGB::White;
currentPalette[8] = CRGB::White;
currentPalette[12] = CRGB::White;
}
// This function sets up a palette of purple and green stripes.
void SetupPurpleAndGreenPalette()
{
CRGB purple = CHSV(HUE_PURPLE, 255, 255);
CRGB green = CHSV(HUE_GREEN, 255, 255);
CRGB black = CRGB::Black;
currentPalette = CRGBPalette16(
green, green, black, black,
purple, purple, black, black,
green, green, black, black,
purple, purple, black, black
);
}
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
void colorTemp()
{
// draw a generic, no-name rainbow
static uint8_t starthue = 0;
fill_rainbow(leds + 5, LED_NUM - 5, --starthue, 20);
// Choose which 'color temperature' profile to enable.
uint8_t secs = (millis() / 1000) % (DISPLAYTIME * 2);
if (secs < DISPLAYTIME) {
FastLED.setTemperature(TEMPERATURE_1 ); // first temperature
leds[0] = TEMPERATURE_1; // show indicator pixel
} else {
FastLED.setTemperature(TEMPERATURE_2 ); // second temperature
leds[0] = TEMPERATURE_2; // show indicator pixel
}
// Black out the LEDs for a few secnds between color changes
// to let the eyes and brains adjust
if((secs % DISPLAYTIME) < BLACKTIME) {
memset8(leds, 0, LED_NUM * sizeof(CRGB));
}
FastLED.show();
FastLED.delay(8);
}
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
void fire()
{
// Array of temperature readings at each simulation cell
static byte heat[LED_NUM];
// Step 1. Cool down every cell a little
for (int i = 0; i < LED_NUM; i++) {
heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / LED_NUM) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k= LED_NUM - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if (random8() < SPARKING ) {
int y = random8(7);
heat[y] = qadd8(heat[y], random8(160,255));
}
// Step 4. Map from heat cells to LED colors
for (int j = 0; j < LED_NUM; j++) {
CRGB color = HeatColor( heat[j]);
int pixelnumber;
if (gReverseDirection) {
pixelnumber = (LED_NUM - 1) - j;
} else {
pixelnumber = j;
}
leds[pixelnumber] = color;
}
FastLED.delay(1000 / speed);
}
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
void loop() {
// MQTT
testConnectMQTT();
@ -517,18 +210,6 @@ void loop() {
if (!ledState) {
FastLED.delay(1000);
} else {
if (ledEffect == LED_EFFECT_CYLON) {
ledCylon();
} else if (ledEffect == LED_EFFECT_FULLRED) {
ledFullColor();
} else if (ledEffect == LED_EFFECT_COLORPATTERN) {
ledColorPattern();
} else if (ledEffect == LED_EFFECT_COLORTEMP) {
colorTemp();
} else if (ledEffect == LED_EFFECT_FIRE) {
fire();
} else {
ledError();
}
}
}

View File

@ -1,180 +1,42 @@
#define SERIAL_SPEED 115200
# TODO : tout reste à faire, ceci est la copie de mqttfastledmenu à adapter
// LED
#define LED_NUM 300
#define LED_PIN 5 // = D1
#define LED_CHIPSET WS2812B
#define LED_COLOR_ORDER GRB
#define LED_BRIGHTNESS_DEFAULT 96
#define LED_SPEED_DEFAULT 120
#define LED_COLOR_DEFAULT CRGB::Red
#define LED_EFFECT_CYLON "cylon"
#define LED_EFFECT_COLORPATTERN "colorp"
#define LED_EFFECT_COLORTEMP "colort"
#define LED_EFFECT_FIRE "fire"
#define LED_EFFECT_FULLRED "full"
#define LED_EFFECT_ERROR "error"
// WIFI
#define WIFI_SSID "XXX"
#define WIFI_PASSWORD "XXX"
WiFiClient espClient;
// MQTT
#define MQTT_SERVER "XXX"
#define MQTT_PORT 1883
#define MQTT_USER "XXX"
#define MQTT_PASS "XXX"
#define MQTT_LED_COMMAND "strip1/switch"
#define MQTT_LED_STATE "strip1/status"
#define MQTT_LED_EFFECT_COMMAND "strip1/effect/switch"
#define MQTT_LED_EFFECT_STATE "strip1/effect/status"
#define MQTT_LED_BRIGHTNESS_COMMAND "strip1/brightness/switch"
#define MQTT_LED_BRIGHTNESS_STATE "strip1/brightness/status"
#define MQTT_LED_SPEED_COMMAND "strip1/speed/switch"
#define MQTT_LED_SPEED_STATE "strip1/speed/status"
#define MQTT_LED_COLOR_COMMAND "strip1/color/switch"
#define MQTT_LED_COLOR_STATE "strip1/color/status"
#define MQTT_LED_COMMAND "alarmclock/switch"
#define MQTT_LED_STATE "alarmclock/status"
#define MQTT_LED_BRIGHTNESS_COMMAND "alarmclock/brightness/switch"
#define MQTT_LED_BRIGHTNESS_STATE "alarmclock/brightness/status"
#define MQTT_LED_COLOR_COMMAND "alarmclock/color/switch"
#define MQTT_LED_COLOR_STATE "alarmclock/color/status"
char message_buff[100];
PubSubClient client(espClient);
void setupWifi();
void testConnectMQTT();
void callbackMQTT(char* topic, byte* payload, unsigned int length);
void mqttSendState();
void mqttSendEffectState();
void mqttSendBrightnessState();
void mqttSendSpeedState();
void mqttSendColorState();
void ledBlackAll();
void ledCylon();
void ledError();
void ledFullColor();
///////////////////////////////// ColorPalette
// This example shows several ways to set up and use 'palettes' of colors
// with FastLED.
//
// These compact palettes provide an easy way to re-colorize your
// animation on the fly, quickly, easily, and with low overhead.
//
// USING palettes is MUCH simpler in practice than in theory, so first just
// run this sketch, and watch the pretty lights as you then read through
// the code. Although this sketch has eight (or more) different color schemes,
// the entire sketch compiles down to about 6.5K on AVR.
//
// FastLED provides a few pre-configured color palettes, and makes it
// extremely easy to make up your own color schemes with palettes.
//
// Some notes on the more abstract 'theory and practice' of
// FastLED compact palettes are at the bottom of this file.
CRGBPalette16 currentPalette;
TBlendType currentBlending;
extern CRGBPalette16 myRedWhiteBluePalette;
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;
// This example shows how to set up a static color palette
// which is stored in PROGMEM (flash), which is almost always more
// plentiful than RAM. A static PROGMEM palette like this
// takes up 64 bytes of flash.
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM =
{
CRGB::Red,
CRGB::Gray, // 'white' is too bright compared to red and blue
CRGB::Blue,
CRGB::Black,
CRGB::Red,
CRGB::Gray,
CRGB::Blue,
CRGB::Black,
CRGB::Red,
CRGB::Red,
CRGB::Gray,
CRGB::Gray,
CRGB::Blue,
CRGB::Blue,
CRGB::Black,
CRGB::Black
};
void ledColorPattern();
void FillLEDsFromPaletteColors(uint8_t colorIndex);
void ChangePalettePeriodically();
void SetupTotallyRandomPalette();
void SetupBlackAndWhiteStripedPalette();
void SetupPurpleAndGreenPalette();
//////////////////////////////////////////////// ColorTemperature
// THIS EXAMPLE demonstrates the second, "color temperature" control.
// It shows a simple rainbow animation first with one temperature profile,
// and a few seconds later, with a different temperature profile.
//
// The first pixel of the strip will show the color temperature.
//
// HELPFUL HINTS for "seeing" the effect in this demo:
// * Don't look directly at the LED pixels. Shine the LEDs aganst
// a white wall, table, or piece of paper, and look at the reflected light.
//
// * If you watch it for a bit, and then walk away, and then come back
// to it, you'll probably be able to "see" whether it's currently using
// the 'redder' or the 'bluer' temperature profile, even not counting
// the lowest 'indicator' pixel.
//
//
// FastLED provides these pre-conigured incandescent color profiles:
// Candle, Tungsten40W, Tungsten100W, Halogen, CarbonArc,
// HighNoonSun, DirectSunlight, OvercastSky, ClearBlueSky,
// FastLED provides these pre-configured gaseous-light color profiles:
// WarmFluorescent, StandardFluorescent, CoolWhiteFluorescent,
// FullSpectrumFluorescent, GrowLightFluorescent, BlackLightFluorescent,
// MercuryVapor, SodiumVapor, MetalHalide, HighPressureSodium,
// FastLED also provides an "Uncorrected temperature" profile
// UncorrectedTemperature;
#define TEMPERATURE_1 Tungsten100W
#define TEMPERATURE_2 OvercastSky
// How many seconds to show each temperature before switching
#define DISPLAYTIME 20
// How many seconds to show black between switches
#define BLACKTIME 3
void colorTemp();
///////////////////////////////////////////////Fire202
bool gReverseDirection = false;
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
#define COOLING 55
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120
void fire();

View File

@ -1,7 +1,7 @@
- platform: "mqtt"
name: "alarmclock"
retain: true
command_topic: "strip1/switch"
state_topic: "strip1/status"
rgb_command_topic: "strip1/color/switch"
rgb_state_topic: "strip1/color/status"
command_topic: "alarmclock/switch"
state_topic: "alarmclock/status"
rgb_command_topic: "alarmclock/color/switch"
rgb_state_topic: "alarmclock/color/status"

View File

@ -1,5 +1,3 @@
# TODO : tout reste à faire, ceci est la copie de mqttfastledmenu à adapter
homeassistant:
customize: !include_dir_merge_named "conf_customize.d/"