Merge branch 'effects' into 'master'

Effects

See merge request !3
This commit is contained in:
Julien Cabillot 2017-03-12 02:00:44 +01:00
commit 3f4db8a813
5 changed files with 426 additions and 58 deletions

10
.gitignore vendored
View File

@ -1,6 +1,8 @@
.vscode/* .vscode/*
arduino/mqttfastledmenu/mqttfastledmenu.h arduino/mqttfastledmenu/mqttfastledmenu.h
arduino/.pioenvs .travis.yml
arduino/.piolibdeps lib/*
arduino/.clang_complete .pioenvs
arduino/.gcc-flags.json .piolibdeps
.clang_complete
.gcc-flags.json

View File

@ -1,17 +1,20 @@
#include <Arduino.h> #include <Arduino.h>
#include "mqttfastledmenu.h" // TODO : essayer, devrait limiter le flikering
//#define FASTLED_ALLOW_INTERRUPTS 0
#define FASTLED_ESP8266_NODEMCU_PIN_ORDER
#include <FastLED.h> #include <FastLED.h>
#include <ESP8266WiFi.h> #include <ESP8266WiFi.h>
#include <PubSubClient.h> #include <PubSubClient.h>
#include "mqttfastledmenu.h"
// LED // LED
int brightness = LED_BRIGHTNESS_DEFAULT; int brightness = LED_BRIGHTNESS_DEFAULT;
int color = LED_COLOR_DEFAULT; int color = LED_COLOR_DEFAULT;
int speed = LED_SPEED_DEFAULT; int speed = LED_SPEED_DEFAULT;
CRGB leds[LED_NUM]; CRGB leds[LED_NUM];
String ledEffect = LED_EFFECT_CYLON; String ledEffect = LED_EFFECT_ERROR;
boolean ledState = false; boolean ledState = false;
// WIFI // WIFI
@ -21,6 +24,7 @@ WiFiClient espClient;
char message_buff[100]; char message_buff[100];
PubSubClient client(espClient); PubSubClient client(espClient);
void setup() void setup()
{ {
Serial.begin(SERIAL_SPEED); Serial.begin(SERIAL_SPEED);
@ -33,8 +37,6 @@ void setup()
client.setServer(MQTT_SERVER, MQTT_PORT); client.setServer(MQTT_SERVER, MQTT_PORT);
client.setCallback(callbackMQTT); client.setCallback(callbackMQTT);
testConnectMQTT(); testConnectMQTT();
// TODO : ne marche pas comme je le désire :
// au boot il prends les params par défaut, j'aimerais ceux de home assistant
// LED // LED
LEDS.addLeds<LED_CHIPSET,LED_PIN, LED_COLOR_ORDER>(leds, LED_NUM).setCorrection(TypicalSMD5050); LEDS.addLeds<LED_CHIPSET,LED_PIN, LED_COLOR_ORDER>(leds, LED_NUM).setCorrection(TypicalSMD5050);
@ -52,6 +54,11 @@ void setup()
client.loop(); client.loop();
} }
//////////////////////////////// ColorPalette ///////////////////////////////
currentPalette = RainbowColors_p;
currentBlending = LINEARBLEND;
//////////////////////////////// ColorPalette ///////////////////////////////
Serial.println("End of setup"); Serial.println("End of setup");
} }
@ -122,7 +129,6 @@ void callbackMQTT(char* topic, byte* payload, unsigned int length)
// Si on ne repasse pas tout à noir, cela peut faire des effets surprenants // Si on ne repasse pas tout à noir, cela peut faire des effets surprenants
ledBlackAll(); ledBlackAll();
ledEffect = msgString; ledEffect = msgString;
// TODO : a vraiment tester
client.publish(MQTT_LED_EFFECT_STATE, message_buff, true); client.publish(MQTT_LED_EFFECT_STATE, message_buff, true);
} else if (stopic == MQTT_LED_BRIGHTNESS_COMMAND) { } else if (stopic == MQTT_LED_BRIGHTNESS_COMMAND) {
brightness = msgString.toInt(); brightness = msgString.toInt();
@ -143,62 +149,288 @@ void callbackMQTT(char* topic, byte* payload, unsigned int length)
} }
// LED // LED
/**
* Coupe tout le strip de led.
*/
void ledBlackAll() void ledBlackAll()
{ {
FastLED.clear(); FastLED.clear();
FastLED.show(); FastLED.show();
} }
/**
* Effet Cylon : défilement d'une simple led sur le strip aller/retour.
* Pour faire plus sympas on ajoute une lueur autour, avec une lumière atténué.
*/
void ledCylon() void ledCylon()
{ {
// Effet cylon : on allume une led, on attends, on eteinds, on passe à la suivante
for(int i = 0; i < LED_NUM; i++) { for(int i = 0; i < LED_NUM; i++) {
client.loop(); client.loop();
if (ledEffect != LED_EFFECT_CYLON) { if (ledEffect != LED_EFFECT_CYLON) {
return; return;
} }
if ((i - 3) >= 0) {
leds[i - 3] = CRGB::Black;
}
if ((i - 2) >= 0) {
/*
* Se lit 128/256 d'intensité lumineuse actuelle
* https://github.com/FastLED/FastLED/wiki/Pixel-reference#dimming-and-brightening-colors
*/
leds[i - 2].fadeLightBy(240);
}
if ((i - 1) >= 0) {
leds[i - 1].fadeLightBy(200);
}
leds[i] = color; leds[i] = color;
FastLED.delay(1000 / speed);
leds[i] = CRGB::Black; if ((i + 1) <= LED_NUM) {
leds[i + 1] = color;
// Je suis volontairement un peu moins puissant sur l'avant
// pour donner un effet de trainée sur l'arrière
leds[i + 1].fadeLightBy(220);
}
if ((i + 2) <= LED_NUM) {
leds[i + 2] = color;
leds[i + 2].fadeLightBy(240);
}
FastLED.delay(1000 / speed); FastLED.delay(1000 / speed);
} }
// led[0] et led[255] sont gérées par la loop précédante
for(int i = LED_NUM - 1; i > 0; i--) { for(int i = LED_NUM - 1; i > 0; i--) {
client.loop(); client.loop();
if (ledEffect != LED_EFFECT_CYLON) { if (ledEffect != LED_EFFECT_CYLON) {
return; return;
} }
leds[i] = color; if ((i - 2) >= 0) {
FastLED.delay(1000 / speed); leds[i - 2] = color;
leds[i] = CRGB::Black; leds[i - 2].fadeLightBy(240);
FastLED.show();
} }
FastLED.delay(1000 / speed); if ((i - 1) >= 0) {
leds[i - 1] = color;
leds[i - 1].fadeLightBy(220);
} }
leds[i] = color;
if ((i + 1) <= LED_NUM) {
leds[i + 1].fadeLightBy(200);
}
if ((i + 2) <= LED_NUM) {
leds[i + 2].fadeLightBy(240);
}
if ((i + 3) <= LED_NUM) {
leds[i + 3] = CRGB::Black;
}
FastLED.delay(1000 / speed);
}
}
/**
* Utilise pour indiquer une erreur sur la reception de l'effet.
*/
void ledError() void ledError()
{ {
for (int i = 0; i < LED_NUM; i++) { for (int i = 0; i < LED_NUM; i++) {
if ((i % 2) == 0) { if ((i % 2) == 0) {
leds[i] = CRGB::Black; leds[i] = CRGB::Black;
} else { } else {
leds[i] = color; leds[i] = CRGB::Red;
} }
} }
FastLED.delay(1000 / speed); FastLED.delay(1000 / speed);
} }
/**
* Affiche une couleur de manière uniforme sur le strip.
* Pour éviter un éclairage basique, on applique un breath qui permet
* de faire respirer la couleur (brightness).
*/
void ledFullColor() void ledFullColor()
{ {
fill_solid(leds, LED_NUM, color); fill_solid(leds, LED_NUM, color);
int breath = (exp(sin(millis() / 2000.0 * PI)) - 0.36787944) * 108.4; // TODO : il fadrait pas faire 0 -> 255 mais plutot 20 (ou plus) -> brightness
// Source : http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
// Augmenter 2000 augmente la fréquence (c'est en fait sin((temps / 1000) * Pi/2)
// 0.36787944 ?? censé correspondre au minimum
// 108.4 ?? censé correspondre au maximum
int breath = (exp(sin(millis() / 2000.0 * PI)) - 0.3678794) * 108.4;
Serial.print(breath);
Serial.println(" / 255");
FastLED.setBrightness(breath); FastLED.setBrightness(breath);
FastLED.delay(100 / speed); FastLED.delay(100 / speed);
} }
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
void ledColorPattern()
{
ChangePalettePeriodically();
static uint8_t startIndex = 0;
startIndex = startIndex + 1; /* motion speed */
FillLEDsFromPaletteColors(startIndex);
FastLED.delay(1000 / speed);
}
void FillLEDsFromPaletteColors(uint8_t colorIndex)
{
uint8_t brightness = 255;
for( int i = 0; i < LED_NUM; i++) {
leds[i] = ColorFromPalette(
currentPalette,
colorIndex,
brightness,
currentBlending
);
colorIndex += 3;
}
}
// There are several different palettes of colors demonstrated here.
//
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
//
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly. All are shown here.
void ChangePalettePeriodically()
{
uint8_t secondHand = (millis() / 1000) % 60;
static uint8_t lastSecond = 99;
if( lastSecond != secondHand) {
lastSecond = secondHand;
if (secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; }
if (secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; }
if (secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; }
if (secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
}
}
// This function fills the palette with totally random colors.
void SetupTotallyRandomPalette()
{
for (int i = 0; i < 16; i++) {
currentPalette[i] = CHSV(random8(), 255, random8());
}
}
// This function sets up a palette of black and white stripes,
// using code. Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
void SetupBlackAndWhiteStripedPalette()
{
// 'black out' all 16 palette entries...
fill_solid(currentPalette, 16, CRGB::Black);
// and set every fourth one to white.
currentPalette[0] = CRGB::White;
currentPalette[4] = CRGB::White;
currentPalette[8] = CRGB::White;
currentPalette[12] = CRGB::White;
}
// This function sets up a palette of purple and green stripes.
void SetupPurpleAndGreenPalette()
{
CRGB purple = CHSV(HUE_PURPLE, 255, 255);
CRGB green = CHSV(HUE_GREEN, 255, 255);
CRGB black = CRGB::Black;
currentPalette = CRGBPalette16(
green, green, black, black,
purple, purple, black, black,
green, green, black, black,
purple, purple, black, black
);
}
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
void colorTemp()
{
// draw a generic, no-name rainbow
static uint8_t starthue = 0;
fill_rainbow(leds + 5, LED_NUM - 5, --starthue, 20);
// Choose which 'color temperature' profile to enable.
uint8_t secs = (millis() / 1000) % (DISPLAYTIME * 2);
if (secs < DISPLAYTIME) {
FastLED.setTemperature(TEMPERATURE_1 ); // first temperature
leds[0] = TEMPERATURE_1; // show indicator pixel
} else {
FastLED.setTemperature(TEMPERATURE_2 ); // second temperature
leds[0] = TEMPERATURE_2; // show indicator pixel
}
// Black out the LEDs for a few secnds between color changes
// to let the eyes and brains adjust
if((secs % DISPLAYTIME) < BLACKTIME) {
memset8(leds, 0, LED_NUM * sizeof(CRGB));
}
FastLED.show();
FastLED.delay(8);
}
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
void fire()
{
// Array of temperature readings at each simulation cell
static byte heat[LED_NUM];
// Step 1. Cool down every cell a little
for (int i = 0; i < LED_NUM; i++) {
heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / LED_NUM) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k= LED_NUM - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if (random8() < SPARKING ) {
int y = random8(7);
heat[y] = qadd8(heat[y], random8(160,255));
}
// Step 4. Map from heat cells to LED colors
for (int j = 0; j < LED_NUM; j++) {
CRGB color = HeatColor( heat[j]);
int pixelnumber;
if (gReverseDirection) {
pixelnumber = (LED_NUM - 1) - j;
} else {
pixelnumber = j;
}
leds[pixelnumber] = color;
}
FastLED.delay(1000 / speed);
}
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
void loop() { void loop() {
// MQTT // MQTT
testConnectMQTT(); testConnectMQTT();
@ -212,6 +444,12 @@ void loop() {
ledCylon(); ledCylon();
} else if (ledEffect == LED_EFFECT_FULLRED) { } else if (ledEffect == LED_EFFECT_FULLRED) {
ledFullColor(); ledFullColor();
} else if (ledEffect == LED_EFFECT_COLORPATTERN) {
ledColorPattern();
} else if (ledEffect == LED_EFFECT_COLORTEMP) {
colorTemp();
} else if (ledEffect == LED_EFFECT_FIRE) {
fire();
} else { } else {
ledError(); ledError();
} }

View File

@ -10,6 +10,9 @@
#define LED_COLOR_DEFAULT CRGB::Red #define LED_COLOR_DEFAULT CRGB::Red
#define LED_EFFECT_CYLON "cylon" #define LED_EFFECT_CYLON "cylon"
#define LED_EFFECT_COLORPATTERN "colorp"
#define LED_EFFECT_COLORTEMP "colort"
#define LED_EFFECT_FIRE "fire"
#define LED_EFFECT_FULLRED "full" #define LED_EFFECT_FULLRED "full"
#define LED_EFFECT_ERROR "error" #define LED_EFFECT_ERROR "error"
@ -34,11 +37,6 @@
#define MQTT_LED_COLOR_COMMAND "strip1/color/switch" #define MQTT_LED_COLOR_COMMAND "strip1/color/switch"
#define MQTT_LED_COLOR_STATE "strip1/color/status" #define MQTT_LED_COLOR_STATE "strip1/color/status"
// FastLED
// TODO : essayer, devrait limiter le flikering
//#define FASTLED_ALLOW_INTERRUPTS 0
#define FASTLED_ESP8266_NODEMCU_PIN_ORDER
void setupWifi(); void setupWifi();
void testConnectMQTT(); void testConnectMQTT();
void callbackMQTT(char* topic, byte* payload, unsigned int length); void callbackMQTT(char* topic, byte* payload, unsigned int length);
@ -46,3 +44,129 @@ void ledBlackAll();
void ledCylon(); void ledCylon();
void ledError(); void ledError();
void ledFullColor(); void ledFullColor();
///////////////////////////////// ColorPalette
// This example shows several ways to set up and use 'palettes' of colors
// with FastLED.
//
// These compact palettes provide an easy way to re-colorize your
// animation on the fly, quickly, easily, and with low overhead.
//
// USING palettes is MUCH simpler in practice than in theory, so first just
// run this sketch, and watch the pretty lights as you then read through
// the code. Although this sketch has eight (or more) different color schemes,
// the entire sketch compiles down to about 6.5K on AVR.
//
// FastLED provides a few pre-configured color palettes, and makes it
// extremely easy to make up your own color schemes with palettes.
//
// Some notes on the more abstract 'theory and practice' of
// FastLED compact palettes are at the bottom of this file.
CRGBPalette16 currentPalette;
TBlendType currentBlending;
extern CRGBPalette16 myRedWhiteBluePalette;
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;
// This example shows how to set up a static color palette
// which is stored in PROGMEM (flash), which is almost always more
// plentiful than RAM. A static PROGMEM palette like this
// takes up 64 bytes of flash.
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM =
{
CRGB::Red,
CRGB::Gray, // 'white' is too bright compared to red and blue
CRGB::Blue,
CRGB::Black,
CRGB::Red,
CRGB::Gray,
CRGB::Blue,
CRGB::Black,
CRGB::Red,
CRGB::Red,
CRGB::Gray,
CRGB::Gray,
CRGB::Blue,
CRGB::Blue,
CRGB::Black,
CRGB::Black
};
void ledColorPattern();
void FillLEDsFromPaletteColors(uint8_t colorIndex);
void ChangePalettePeriodically();
void SetupTotallyRandomPalette();
void SetupBlackAndWhiteStripedPalette();
void SetupPurpleAndGreenPalette();
//////////////////////////////////////////////// ColorTemperature
// THIS EXAMPLE demonstrates the second, "color temperature" control.
// It shows a simple rainbow animation first with one temperature profile,
// and a few seconds later, with a different temperature profile.
//
// The first pixel of the strip will show the color temperature.
//
// HELPFUL HINTS for "seeing" the effect in this demo:
// * Don't look directly at the LED pixels. Shine the LEDs aganst
// a white wall, table, or piece of paper, and look at the reflected light.
//
// * If you watch it for a bit, and then walk away, and then come back
// to it, you'll probably be able to "see" whether it's currently using
// the 'redder' or the 'bluer' temperature profile, even not counting
// the lowest 'indicator' pixel.
//
//
// FastLED provides these pre-conigured incandescent color profiles:
// Candle, Tungsten40W, Tungsten100W, Halogen, CarbonArc,
// HighNoonSun, DirectSunlight, OvercastSky, ClearBlueSky,
// FastLED provides these pre-configured gaseous-light color profiles:
// WarmFluorescent, StandardFluorescent, CoolWhiteFluorescent,
// FullSpectrumFluorescent, GrowLightFluorescent, BlackLightFluorescent,
// MercuryVapor, SodiumVapor, MetalHalide, HighPressureSodium,
// FastLED also provides an "Uncorrected temperature" profile
// UncorrectedTemperature;
#define TEMPERATURE_1 Tungsten100W
#define TEMPERATURE_2 OvercastSky
// How many seconds to show each temperature before switching
#define DISPLAYTIME 20
// How many seconds to show black between switches
#define BLACKTIME 3
void colorTemp();
///////////////////////////////////////////////Fire202
bool gReverseDirection = false;
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
#define COOLING 55
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
#define SPARKING 120
void fire();

View File

@ -5,12 +5,16 @@ mqtt:
username: "XXX" username: "XXX"
password: "XXX" password: "XXX"
# TODO : idéee ! préfixé les functions d'un nombre qu'on sort lors du publish, cela permet de n'avoir que des id
input_select: input_select:
strip1_effect: strip1_effect:
name: "Choix de l'effet" name: "Choix de l'effet"
options: options:
- "cylon" - "cylon"
- "full" - "full"
- "colorp"
- "colort"
- "fire"
- "error" - "error"
input_slider: input_slider:

View File

@ -14,5 +14,5 @@ board=nodemcuv2
framework=arduino framework=arduino
[platformio] [platformio]
src_dir=mqttfastledmenu src_dir=arduino/mqttfastledmenu
lib_dir=/home/jcabillot/Arduino/libraries lib_dir=/home/jcabillot/Arduino/libraries