525 lines
14 KiB
C++
525 lines
14 KiB
C++
#include <Arduino.h>
|
|
|
|
// TODO : essayer, devrait limiter le flikering
|
|
//#define FASTLED_ALLOW_INTERRUPTS 0
|
|
#define FASTLED_ESP8266_NODEMCU_PIN_ORDER
|
|
#include <FastLED.h>
|
|
#include <ESP8266WiFi.h>
|
|
#include <PubSubClient.h>
|
|
|
|
#include "mqttfastledmenu.h"
|
|
|
|
// LED
|
|
// En déplaçant ces vars dans le .h + init dans le setup, cylon crash au moment du premier retour ?!
|
|
int brightness = LED_BRIGHTNESS_DEFAULT;
|
|
int color = LED_COLOR_DEFAULT;
|
|
int speed = LED_SPEED_DEFAULT;
|
|
CRGB leds[LED_NUM];
|
|
String ledEffect = LED_EFFECT_ERROR;
|
|
boolean ledState = false;
|
|
|
|
// WIFI
|
|
WiFiClient espClient;
|
|
|
|
// MQTT
|
|
char message_buff[100];
|
|
PubSubClient client(espClient);
|
|
|
|
void setup()
|
|
{
|
|
Serial.begin(SERIAL_SPEED);
|
|
Serial.println("\nresetting");
|
|
|
|
// WIFI
|
|
setupWifi();
|
|
|
|
// LED
|
|
/*
|
|
brightness = LED_BRIGHTNESS_DEFAULT;
|
|
color = LED_COLOR_DEFAULT;
|
|
speed = LED_SPEED_DEFAULT;
|
|
ledEffect = LED_EFFECT_ERROR;
|
|
ledState = false;
|
|
*/
|
|
|
|
LEDS.addLeds<LED_CHIPSET,LED_PIN, LED_COLOR_ORDER>(leds, LED_NUM).setCorrection(TypicalSMD5050);
|
|
ledBlackAll();
|
|
FastLED.setBrightness(brightness);
|
|
|
|
//////////////////////////////// ColorPalette ///////////////////////////////
|
|
currentPalette = RainbowColors_p;
|
|
currentBlending = LINEARBLEND;
|
|
//////////////////////////////// ColorPalette ///////////////////////////////
|
|
|
|
// MQTT
|
|
client.setServer(MQTT_SERVER, MQTT_PORT);
|
|
client.setCallback(callbackMQTT);
|
|
testConnectMQTT();
|
|
|
|
Serial.println("Ready");
|
|
|
|
/* MQTT
|
|
* Il est important de faire un loop avant toute chose,
|
|
* afin de récupérer les valeurs provenant du broker mqtt
|
|
* et pas démarrer avec de vieilles infos.
|
|
* Il faut un certains nombres de tentative pour tout récuperer.
|
|
*/
|
|
for (short int i = 0; i < 10; i++) {
|
|
delay(200);
|
|
client.loop();
|
|
}
|
|
|
|
Serial.println("End of setup");
|
|
}
|
|
|
|
// WIFI
|
|
void setupWifi()
|
|
{
|
|
Serial.print("Connexion a ");
|
|
Serial.print(WIFI_SSID);
|
|
WiFi.mode(WIFI_STA);
|
|
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
|
|
|
|
while (WiFi.status() != WL_CONNECTED) {
|
|
delay(500);
|
|
Serial.print(".");
|
|
}
|
|
Serial.println(" OK");
|
|
Serial.print("IP : ");
|
|
Serial.println(WiFi.localIP());
|
|
}
|
|
|
|
// MQTT
|
|
void testConnectMQTT()
|
|
{
|
|
while (!client.connected()) {
|
|
Serial.print("Connexion au serveur MQTT... ");
|
|
if (client.connect("ESP8266Client", MQTT_USER, MQTT_PASS)) {
|
|
Serial.print("OK\nSend Current State");
|
|
mqttSendState();
|
|
mqttSendSpeedState();
|
|
mqttSendBrightnessState();
|
|
mqttSendEffectState();
|
|
mqttSendColorState();
|
|
|
|
Serial.print("OK\nSubscribe");
|
|
client.subscribe(MQTT_LED_COMMAND);
|
|
client.subscribe(MQTT_LED_EFFECT_COMMAND);
|
|
client.subscribe(MQTT_LED_BRIGHTNESS_COMMAND);
|
|
client.subscribe(MQTT_LED_SPEED_COMMAND);
|
|
client.subscribe(MQTT_LED_COLOR_COMMAND);
|
|
|
|
Serial.println(" OK");
|
|
} else {
|
|
Serial.print("KO, erreur : ");
|
|
Serial.print(client.state());
|
|
Serial.println(", on attend 5 secondes avant de recommencer");
|
|
delay(5000);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Déclenche les actions à la réception d'un message
|
|
void callbackMQTT(char* topic, byte* payload, unsigned int length)
|
|
{
|
|
String stopic = String(topic);
|
|
|
|
unsigned int i = 0;
|
|
for(i = 0; i < length; i++) {
|
|
message_buff[i] = payload[i];
|
|
}
|
|
message_buff[i] = '\0';
|
|
String msgString = String(message_buff);
|
|
|
|
Serial.print("Received [" + stopic + "] : ");
|
|
Serial.println(msgString);
|
|
|
|
if (stopic == MQTT_LED_COMMAND) {
|
|
if (msgString == "ON") {
|
|
ledState = true;
|
|
} else {
|
|
ledState = false;
|
|
ledBlackAll();
|
|
}
|
|
mqttSendState();
|
|
} else if (stopic == MQTT_LED_EFFECT_COMMAND) {
|
|
// Si on ne repasse pas tout à noir, cela peut faire des effets surprenants
|
|
ledBlackAll();
|
|
ledEffect = msgString;
|
|
mqttSendEffectState();
|
|
} else if (stopic == MQTT_LED_BRIGHTNESS_COMMAND) {
|
|
brightness = msgString.toInt();
|
|
FastLED.setBrightness(brightness);
|
|
mqttSendBrightnessState();
|
|
} else if (stopic == MQTT_LED_COLOR_COMMAND) {
|
|
// Sample : 134,168,255
|
|
int red = msgString.substring(0, msgString.indexOf(',')).toInt();
|
|
int green = msgString.substring(msgString.indexOf(',') + 1, msgString.lastIndexOf(',')).toInt();
|
|
int blue = msgString.substring(msgString.lastIndexOf(',') + 1).toInt();
|
|
|
|
color=((red <<16)|(green <<8)|blue);
|
|
mqttSendColorState();
|
|
} else if (stopic == MQTT_LED_SPEED_COMMAND) {
|
|
speed = msgString.toInt();
|
|
mqttSendSpeedState();
|
|
}
|
|
}
|
|
|
|
void mqttSendState()
|
|
{
|
|
client.publish(MQTT_LED_STATE, (ledState) ? "ON": "OFF", true);
|
|
}
|
|
|
|
void mqttSendEffectState()
|
|
{
|
|
char buff[ledEffect.length() + 1];
|
|
ledEffect.toCharArray(buff, ledEffect.length() + 1);
|
|
client.publish(MQTT_LED_EFFECT_STATE, buff, true);
|
|
}
|
|
|
|
void mqttSendBrightnessState()
|
|
{
|
|
char buff[4];
|
|
itoa(brightness, buff, 10);
|
|
client.publish(MQTT_LED_BRIGHTNESS_STATE, buff, true);
|
|
}
|
|
|
|
void mqttSendSpeedState()
|
|
{
|
|
char buff[4];
|
|
itoa(speed, buff, 10);
|
|
client.publish(MQTT_LED_SPEED_STATE, buff, true);
|
|
}
|
|
|
|
void mqttSendColorState()
|
|
{
|
|
int red = color>>16 & 0xFF;
|
|
int green = color>>8 & 0xFF;
|
|
int blue = color & 0xFF;
|
|
char buff[12];
|
|
|
|
sprintf(buff, "%i,%i,%i", red, green, blue);
|
|
client.publish(MQTT_LED_COLOR_STATE, buff, true);
|
|
}
|
|
|
|
// LED
|
|
/**
|
|
* Coupe tout le strip de led.
|
|
*/
|
|
void ledBlackAll()
|
|
{
|
|
FastLED.clear();
|
|
FastLED.show();
|
|
}
|
|
|
|
/**
|
|
* Effet Cylon : défilement d'une simple led sur le strip aller/retour.
|
|
* Pour faire plus sympas on ajoute une lueur autour, avec une lumière atténué.
|
|
*/
|
|
void ledCylon()
|
|
{
|
|
for (int i = 0; i < LED_NUM; i++) {
|
|
client.loop();
|
|
|
|
if (ledEffect != LED_EFFECT_CYLON) {
|
|
return;
|
|
}
|
|
|
|
if ((i - 3) >= 0) {
|
|
leds[i - 3] = CRGB::Black;
|
|
}
|
|
if ((i - 2) >= 0) {
|
|
/*
|
|
* Se lit 128/256 d'intensité lumineuse actuelle
|
|
* https://github.com/FastLED/FastLED/wiki/Pixel-reference#dimming-and-brightening-colors
|
|
*/
|
|
leds[i - 2] = color;
|
|
leds[i - 2].fadeLightBy(220);
|
|
}
|
|
if ((i - 1) >= 0) {
|
|
leds[i - 1] = color;
|
|
leds[i - 1].fadeLightBy(200);
|
|
}
|
|
|
|
leds[i] = color;
|
|
|
|
if ((i + 1) <= LED_NUM) {
|
|
leds[i + 1] = color;
|
|
// Je suis volontairement un peu moins puissant sur l'avant
|
|
// pour donner un effet de trainée sur l'arrière
|
|
leds[i + 1].fadeLightBy(249);
|
|
}
|
|
|
|
FastLED.delay(1000 / speed);
|
|
}
|
|
// Il faut nettoyer certaines cases avant la prochaine loop
|
|
if ((LED_NUM - 2) >= 0) {
|
|
leds[LED_NUM - 2] = color;
|
|
leds[LED_NUM - 2].fadeLightBy(220);
|
|
}
|
|
if ((LED_NUM - 1) >= 0 ) {
|
|
leds[LED_NUM - 1] = CRGB::Black;
|
|
}
|
|
FastLED.show();
|
|
|
|
// led[0] et led[255] sont gérées par la loop précédante
|
|
for (int i = LED_NUM - 1; i >= 0; i--) {
|
|
client.loop();
|
|
if (ledEffect != LED_EFFECT_CYLON) {
|
|
return;
|
|
}
|
|
if ((i - 1) >= 0) {
|
|
leds[i - 1] = color;
|
|
leds[i - 1].fadeLightBy(249);
|
|
}
|
|
|
|
leds[i] = color;
|
|
|
|
if ((i + 1) <= LED_NUM) {
|
|
leds[i + 1] = color;
|
|
leds[i + 1].fadeLightBy(200);
|
|
}
|
|
|
|
if ((i + 2) <= LED_NUM) {
|
|
leds[i + 2] = color;
|
|
leds[i + 2].fadeLightBy(220);
|
|
}
|
|
|
|
if ((i + 3) <= LED_NUM) {
|
|
leds[i + 3] = CRGB::Black;
|
|
}
|
|
FastLED.delay(1000 / speed);
|
|
}
|
|
// Il faut nettoyer certaines cases avant la prochaine loop
|
|
if (1 <= LED_NUM) {
|
|
leds[1] = color;
|
|
leds[1].fadeLightBy(220);
|
|
}
|
|
if (2 <= LED_NUM) {
|
|
leds[2] = CRGB::Black;
|
|
}
|
|
FastLED.show();
|
|
}
|
|
|
|
/**
|
|
* Utilise pour indiquer une erreur sur la reception de l'effet.
|
|
*/
|
|
void ledError()
|
|
{
|
|
for (int i = 0; i < LED_NUM; i++) {
|
|
if ((i % 2) == 0) {
|
|
leds[i] = CRGB::Black;
|
|
} else {
|
|
leds[i] = CRGB::Red;
|
|
}
|
|
}
|
|
|
|
FastLED.delay(1000 / speed);
|
|
}
|
|
|
|
/**
|
|
* Affiche une couleur de manière uniforme sur le strip.
|
|
* Pour éviter un éclairage basique, on applique un breath qui permet
|
|
* de faire respirer la couleur (brightness).
|
|
*/
|
|
void ledFullColor()
|
|
{
|
|
fill_solid(leds, LED_NUM, color);
|
|
// TODO : il fadrait pas faire 0 -> 255 mais plutot 20 (ou plus) -> brightness
|
|
// Source : http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
|
|
// Augmenter 2000 augmente la fréquence (c'est en fait sin((temps / 1000) * Pi/2)
|
|
// 0.36787944 ?? censé correspondre au minimum
|
|
// 108.4 ?? censé correspondre au maximum
|
|
int breath = (exp(sin(millis() / 2000.0 * PI)) - 0.3678794) * 108.4;
|
|
//Serial.print(breath);
|
|
//Serial.println(" / 255");
|
|
FastLED.setBrightness(breath);
|
|
FastLED.delay(100 / speed);
|
|
}
|
|
|
|
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
|
|
void ledColorPattern()
|
|
{
|
|
ChangePalettePeriodically();
|
|
|
|
static uint8_t startIndex = 0;
|
|
startIndex = startIndex + 1; /* motion speed */
|
|
|
|
FillLEDsFromPaletteColors(startIndex);
|
|
|
|
FastLED.delay(1000 / speed);
|
|
}
|
|
|
|
void FillLEDsFromPaletteColors(uint8_t colorIndex)
|
|
{
|
|
uint8_t brightness = 255;
|
|
|
|
for( int i = 0; i < LED_NUM; i++) {
|
|
leds[i] = ColorFromPalette(
|
|
currentPalette,
|
|
colorIndex,
|
|
brightness,
|
|
currentBlending
|
|
);
|
|
colorIndex += 3;
|
|
}
|
|
}
|
|
|
|
// There are several different palettes of colors demonstrated here.
|
|
//
|
|
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
|
|
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
|
|
//
|
|
// Additionally, you can manually define your own color palettes, or you can write
|
|
// code that creates color palettes on the fly. All are shown here.
|
|
void ChangePalettePeriodically()
|
|
{
|
|
uint8_t secondHand = (millis() / 1000) % 60;
|
|
static uint8_t lastSecond = 99;
|
|
|
|
if( lastSecond != secondHand) {
|
|
lastSecond = secondHand;
|
|
if (secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; }
|
|
if (secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; }
|
|
if (secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; }
|
|
if (secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
|
|
if (secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; }
|
|
if (secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; }
|
|
if (secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
|
|
if (secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
|
|
if (secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; }
|
|
if (secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; }
|
|
if (secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
|
|
}
|
|
}
|
|
|
|
// This function fills the palette with totally random colors.
|
|
void SetupTotallyRandomPalette()
|
|
{
|
|
for (int i = 0; i < 16; i++) {
|
|
currentPalette[i] = CHSV(random8(), 255, random8());
|
|
}
|
|
}
|
|
|
|
// This function sets up a palette of black and white stripes,
|
|
// using code. Since the palette is effectively an array of
|
|
// sixteen CRGB colors, the various fill_* functions can be used
|
|
// to set them up.
|
|
void SetupBlackAndWhiteStripedPalette()
|
|
{
|
|
// 'black out' all 16 palette entries...
|
|
fill_solid(currentPalette, 16, CRGB::Black);
|
|
// and set every fourth one to white.
|
|
currentPalette[0] = CRGB::White;
|
|
currentPalette[4] = CRGB::White;
|
|
currentPalette[8] = CRGB::White;
|
|
currentPalette[12] = CRGB::White;
|
|
}
|
|
|
|
// This function sets up a palette of purple and green stripes.
|
|
void SetupPurpleAndGreenPalette()
|
|
{
|
|
CRGB purple = CHSV(HUE_PURPLE, 255, 255);
|
|
CRGB green = CHSV(HUE_GREEN, 255, 255);
|
|
CRGB black = CRGB::Black;
|
|
|
|
currentPalette = CRGBPalette16(
|
|
green, green, black, black,
|
|
purple, purple, black, black,
|
|
green, green, black, black,
|
|
purple, purple, black, black
|
|
);
|
|
}
|
|
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
|
|
|
|
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
|
|
void colorTemp()
|
|
{
|
|
// draw a generic, no-name rainbow
|
|
static uint8_t starthue = 0;
|
|
fill_rainbow(leds + 5, LED_NUM - 5, --starthue, 20);
|
|
|
|
// Choose which 'color temperature' profile to enable.
|
|
uint8_t secs = (millis() / 1000) % (DISPLAYTIME * 2);
|
|
if (secs < DISPLAYTIME) {
|
|
FastLED.setTemperature(TEMPERATURE_1 ); // first temperature
|
|
leds[0] = TEMPERATURE_1; // show indicator pixel
|
|
} else {
|
|
FastLED.setTemperature(TEMPERATURE_2 ); // second temperature
|
|
leds[0] = TEMPERATURE_2; // show indicator pixel
|
|
}
|
|
|
|
// Black out the LEDs for a few secnds between color changes
|
|
// to let the eyes and brains adjust
|
|
if((secs % DISPLAYTIME) < BLACKTIME) {
|
|
memset8(leds, 0, LED_NUM * sizeof(CRGB));
|
|
}
|
|
|
|
FastLED.show();
|
|
FastLED.delay(8);
|
|
}
|
|
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
|
|
|
|
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
|
|
void fire()
|
|
{
|
|
// Array of temperature readings at each simulation cell
|
|
static byte heat[LED_NUM];
|
|
|
|
// Step 1. Cool down every cell a little
|
|
for (int i = 0; i < LED_NUM; i++) {
|
|
heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / LED_NUM) + 2));
|
|
}
|
|
|
|
// Step 2. Heat from each cell drifts 'up' and diffuses a little
|
|
for (int k= LED_NUM - 1; k >= 2; k--) {
|
|
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
|
|
}
|
|
|
|
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
|
|
if (random8() < SPARKING ) {
|
|
int y = random8(7);
|
|
heat[y] = qadd8(heat[y], random8(160,255));
|
|
}
|
|
|
|
// Step 4. Map from heat cells to LED colors
|
|
for (int j = 0; j < LED_NUM; j++) {
|
|
CRGB color = HeatColor( heat[j]);
|
|
int pixelnumber;
|
|
if (gReverseDirection) {
|
|
pixelnumber = (LED_NUM - 1) - j;
|
|
} else {
|
|
pixelnumber = j;
|
|
}
|
|
leds[pixelnumber] = color;
|
|
}
|
|
|
|
FastLED.delay(1000 / speed);
|
|
}
|
|
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
|
|
|
|
void loop() {
|
|
// MQTT
|
|
testConnectMQTT();
|
|
client.loop();
|
|
|
|
// LED
|
|
if (!ledState) {
|
|
FastLED.delay(1000);
|
|
} else {
|
|
if (ledEffect == LED_EFFECT_CYLON) {
|
|
ledCylon();
|
|
} else if (ledEffect == LED_EFFECT_FULLRED) {
|
|
ledFullColor();
|
|
} else if (ledEffect == LED_EFFECT_COLORPATTERN) {
|
|
ledColorPattern();
|
|
} else if (ledEffect == LED_EFFECT_COLORTEMP) {
|
|
colorTemp();
|
|
} else if (ledEffect == LED_EFFECT_FIRE) {
|
|
fire();
|
|
} else {
|
|
ledError();
|
|
}
|
|
}
|
|
}
|