Use godep

This commit is contained in:
Jakob Borg
2014-03-22 21:33:18 +01:00
parent 89399092b9
commit 52cad94e86
104 changed files with 20937 additions and 2 deletions

View File

@@ -0,0 +1,84 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"errors"
"fmt"
"net"
"sync"
)
var (
errNotSupported = errors.New("not supported")
errMissingAddress = errors.New("missing address")
errInvalidConnType = errors.New("invalid conn type")
errNoSuchInterface = errors.New("no such interface")
)
// References:
//
// RFC 2292 Advanced Sockets API for IPv6
// http://tools.ietf.org/html/rfc2292
// RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
// http://tools.ietf.org/html/rfc2460
// RFC 3493 Basic Socket Interface Extensions for IPv6
// http://tools.ietf.org/html/rfc3493.html
// RFC 3542 Advanced Sockets Application Program Interface (API) for IPv6
// http://tools.ietf.org/html/rfc3542
//
// Note that RFC 3542 obsoltes RFC 2292 but OS X Snow Leopard and the
// former still support RFC 2292 only. Please be aware that almost
// all protocol implementations prohibit using a combination of RFC
// 2292 and RFC 3542 for some practical reasons.
type rawOpt struct {
sync.Mutex
cflags ControlFlags
}
func (c *rawOpt) set(f ControlFlags) { c.cflags |= f }
func (c *rawOpt) clear(f ControlFlags) { c.cflags &^= f }
func (c *rawOpt) isset(f ControlFlags) bool { return c.cflags&f != 0 }
// A ControlFlags reprensents per packet basis IP-level socket option
// control flags.
type ControlFlags uint
const (
FlagTrafficClass ControlFlags = 1 << iota // pass the traffic class on the received packet
FlagHopLimit // pass the hop limit on the received packet
FlagSrc // pass the source address on the received packet
FlagDst // pass the destination address on the received packet
FlagInterface // pass the interface index on the received packet
FlagPathMTU // pass the path MTU on the received packet path
)
// A ControlMessage represents per packet basis IP-level socket
// options.
type ControlMessage struct {
// Receiving socket options: SetControlMessage allows to
// receive the options from the protocol stack using ReadFrom
// method of PacketConn.
//
// Specifying socket options: ControlMessage for WriteTo
// method of PacketConn allows to send the options to the
// protocol stack.
//
TrafficClass int // traffic class, must be 1 <= value <= 255 when specifying
HopLimit int // hop limit, must be 1 <= value <= 255 when specifying
Src net.IP // source address, specifying only
Dst net.IP // destination address, receiving only
IfIndex int // interface index, must be 1 <= value when specifying
NextHop net.IP // next hop address, specifying only
MTU int // path MTU, receiving only
}
func (cm *ControlMessage) String() string {
if cm == nil {
return "<nil>"
}
return fmt.Sprintf("tclass: %#x, hoplim: %v, src: %v, dst: %v, ifindex: %v, nexthop: %v, mtu: %v", cm.TrafficClass, cm.HopLimit, cm.Src, cm.Dst, cm.IfIndex, cm.NextHop, cm.MTU)
}

View File

@@ -0,0 +1,151 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"net"
"os"
"syscall"
"unsafe"
)
const pktinfo = FlagDst | FlagInterface
func setControlMessage(fd int, opt *rawOpt, cf ControlFlags, on bool) error {
opt.Lock()
defer opt.Unlock()
if cf&FlagHopLimit != 0 {
if err := setIPv6ReceiveHopLimit(fd, on); err != nil {
return err
}
if on {
opt.set(FlagHopLimit)
} else {
opt.clear(FlagHopLimit)
}
}
if cf&pktinfo != 0 {
if err := setIPv6ReceivePacketInfo(fd, on); err != nil {
return err
}
if on {
opt.set(cf & pktinfo)
} else {
opt.clear(cf & pktinfo)
}
}
return nil
}
func newControlMessage(opt *rawOpt) (oob []byte) {
opt.Lock()
defer opt.Unlock()
l, off := 0, 0
if opt.isset(FlagHopLimit) {
l += syscall.CmsgSpace(4)
}
if opt.isset(pktinfo) {
l += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if l > 0 {
oob = make([]byte, l)
if opt.isset(FlagHopLimit) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_2292HOPLIMIT
m.SetLen(syscall.CmsgLen(4))
off += syscall.CmsgSpace(4)
}
if opt.isset(pktinfo) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_2292PKTINFO
m.SetLen(syscall.CmsgLen(syscall.SizeofInet6Pktinfo))
off += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
}
return
}
func parseControlMessage(b []byte) (*ControlMessage, error) {
if len(b) == 0 {
return nil, nil
}
cmsgs, err := syscall.ParseSocketControlMessage(b)
if err != nil {
return nil, os.NewSyscallError("parse socket control message", err)
}
cm := &ControlMessage{}
for _, m := range cmsgs {
if m.Header.Level != ianaProtocolIPv6 {
continue
}
switch m.Header.Type {
case syscall.IPV6_2292HOPLIMIT:
cm.HopLimit = int(*(*byte)(unsafe.Pointer(&m.Data[:1][0])))
case syscall.IPV6_2292PKTINFO:
pi := (*syscall.Inet6Pktinfo)(unsafe.Pointer(&m.Data[0]))
cm.IfIndex = int(pi.Ifindex)
cm.Dst = pi.Addr[:]
}
}
return cm, nil
}
func marshalControlMessage(cm *ControlMessage) (oob []byte) {
if cm == nil {
return
}
l, off := 0, 0
if cm.HopLimit > 0 {
l += syscall.CmsgSpace(4)
}
pion := false
if cm.Src.To4() == nil && cm.Src.To16() != nil || cm.IfIndex != 0 {
pion = true
l += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if len(cm.NextHop) == net.IPv6len {
l += syscall.CmsgSpace(syscall.SizeofSockaddrInet6)
}
if l > 0 {
oob = make([]byte, l)
if cm.HopLimit > 0 {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_2292HOPLIMIT
m.SetLen(syscall.CmsgLen(4))
data := oob[off+syscall.CmsgLen(0):]
*(*byte)(unsafe.Pointer(&data[:1][0])) = byte(cm.HopLimit)
off += syscall.CmsgSpace(4)
}
if pion {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_2292PKTINFO
m.SetLen(syscall.CmsgLen(syscall.SizeofInet6Pktinfo))
pi := (*syscall.Inet6Pktinfo)(unsafe.Pointer(&oob[off+syscall.CmsgLen(0)]))
if ip := cm.Src.To16(); ip != nil && ip.To4() == nil {
copy(pi.Addr[:], ip)
}
if cm.IfIndex != 0 {
pi.Ifindex = uint32(cm.IfIndex)
}
off += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if len(cm.NextHop) == net.IPv6len {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_2292NEXTHOP
m.SetLen(syscall.CmsgLen(syscall.SizeofSockaddrInet6))
sa := (*syscall.RawSockaddrInet6)(unsafe.Pointer(&oob[off+syscall.CmsgLen(0)]))
sa.Len = syscall.SizeofSockaddrInet6
sa.Family = syscall.AF_INET6
copy(sa.Addr[:], cm.NextHop)
off += syscall.CmsgSpace(syscall.SizeofSockaddrInet6)
}
}
return
}

View File

@@ -0,0 +1,213 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build freebsd netbsd openbsd
package ipv6
import (
"net"
"os"
"syscall"
"unsafe"
)
const pktinfo = FlagDst | FlagInterface
func setControlMessage(fd int, opt *rawOpt, cf ControlFlags, on bool) error {
opt.Lock()
defer opt.Unlock()
if cf&FlagTrafficClass != 0 {
if err := setIPv6ReceiveTrafficClass(fd, on); err != nil {
return err
}
if on {
opt.set(FlagTrafficClass)
} else {
opt.clear(FlagTrafficClass)
}
}
if cf&FlagHopLimit != 0 {
if err := setIPv6ReceiveHopLimit(fd, on); err != nil {
return err
}
if on {
opt.set(FlagHopLimit)
} else {
opt.clear(FlagHopLimit)
}
}
if cf&pktinfo != 0 {
if err := setIPv6ReceivePacketInfo(fd, on); err != nil {
return err
}
if on {
opt.set(cf & pktinfo)
} else {
opt.clear(cf & pktinfo)
}
}
if cf&FlagPathMTU != 0 {
if err := setIPv6ReceivePathMTU(fd, on); err != nil {
return err
}
if on {
opt.set(FlagPathMTU)
} else {
opt.clear(FlagPathMTU)
}
}
return nil
}
func newControlMessage(opt *rawOpt) (oob []byte) {
opt.Lock()
defer opt.Unlock()
l, off := 0, 0
if opt.isset(FlagTrafficClass) {
l += syscall.CmsgSpace(4)
}
if opt.isset(FlagHopLimit) {
l += syscall.CmsgSpace(4)
}
if opt.isset(pktinfo) {
l += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if opt.isset(FlagPathMTU) {
l += syscall.CmsgSpace(syscall.SizeofIPv6MTUInfo)
}
if l > 0 {
oob = make([]byte, l)
if opt.isset(FlagTrafficClass) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVTCLASS
m.SetLen(syscall.CmsgLen(4))
off += syscall.CmsgSpace(4)
}
if opt.isset(FlagHopLimit) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVHOPLIMIT
m.SetLen(syscall.CmsgLen(4))
off += syscall.CmsgSpace(4)
}
if opt.isset(pktinfo) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVPKTINFO
m.SetLen(syscall.CmsgLen(syscall.SizeofInet6Pktinfo))
off += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if opt.isset(FlagPathMTU) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVPATHMTU
m.SetLen(syscall.CmsgLen(syscall.SizeofIPv6MTUInfo))
off += syscall.CmsgSpace(syscall.SizeofIPv6MTUInfo)
}
}
return
}
func parseControlMessage(b []byte) (*ControlMessage, error) {
if len(b) == 0 {
return nil, nil
}
cmsgs, err := syscall.ParseSocketControlMessage(b)
if err != nil {
return nil, os.NewSyscallError("parse socket control message", err)
}
cm := &ControlMessage{}
for _, m := range cmsgs {
if m.Header.Level != ianaProtocolIPv6 {
continue
}
switch m.Header.Type {
case syscall.IPV6_TCLASS:
cm.TrafficClass = int(*(*byte)(unsafe.Pointer(&m.Data[:1][0])))
case syscall.IPV6_HOPLIMIT:
cm.HopLimit = int(*(*byte)(unsafe.Pointer(&m.Data[:1][0])))
case syscall.IPV6_PKTINFO:
pi := (*syscall.Inet6Pktinfo)(unsafe.Pointer(&m.Data[0]))
cm.Dst = pi.Addr[:]
cm.IfIndex = int(pi.Ifindex)
case syscall.IPV6_PATHMTU:
mi := (*syscall.IPv6MTUInfo)(unsafe.Pointer(&m.Data[0]))
cm.Dst = mi.Addr.Addr[:]
cm.IfIndex = int(mi.Addr.Scope_id)
cm.MTU = int(mi.Mtu)
}
}
return cm, nil
}
func marshalControlMessage(cm *ControlMessage) (oob []byte) {
if cm == nil {
return
}
l, off := 0, 0
if cm.TrafficClass > 0 {
l += syscall.CmsgSpace(4)
}
if cm.HopLimit > 0 {
l += syscall.CmsgSpace(4)
}
pion := false
if cm.Src.To4() == nil && cm.Src.To16() != nil || cm.IfIndex != 0 {
pion = true
l += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if len(cm.NextHop) == net.IPv6len {
l += syscall.CmsgSpace(syscall.SizeofSockaddrInet6)
}
if l > 0 {
oob = make([]byte, l)
if cm.TrafficClass > 0 {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_TCLASS
m.SetLen(syscall.CmsgLen(4))
data := oob[off+syscall.CmsgLen(0):]
*(*byte)(unsafe.Pointer(&data[:1][0])) = byte(cm.TrafficClass)
off += syscall.CmsgSpace(4)
}
if cm.HopLimit > 0 {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_HOPLIMIT
m.SetLen(syscall.CmsgLen(4))
data := oob[off+syscall.CmsgLen(0):]
*(*byte)(unsafe.Pointer(&data[:1][0])) = byte(cm.HopLimit)
off += syscall.CmsgSpace(4)
}
if pion {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_PKTINFO
m.SetLen(syscall.CmsgLen(syscall.SizeofInet6Pktinfo))
pi := (*syscall.Inet6Pktinfo)(unsafe.Pointer(&oob[off+syscall.CmsgLen(0)]))
if ip := cm.Src.To16(); ip != nil && ip.To4() == nil {
copy(pi.Addr[:], ip)
}
if cm.IfIndex != 0 {
pi.Ifindex = uint32(cm.IfIndex)
}
off += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if len(cm.NextHop) == net.IPv6len {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_NEXTHOP
m.SetLen(syscall.CmsgLen(syscall.SizeofSockaddrInet6))
sa := (*syscall.RawSockaddrInet6)(unsafe.Pointer(&oob[off+syscall.CmsgLen(0)]))
sa.Len = syscall.SizeofSockaddrInet6
sa.Family = syscall.AF_INET6
copy(sa.Addr[:], cm.NextHop)
sa.Scope_id = uint32(cm.IfIndex)
off += syscall.CmsgSpace(syscall.SizeofSockaddrInet6)
}
}
return
}

View File

@@ -0,0 +1,217 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"net"
"os"
"syscall"
"unsafe"
)
const (
// See /usr/include/linux/in6.h.
syscall_IPV6_RECVPATHMTU = syscall.IPV6_DSTOPTS + 1 + iota
syscall_IPV6_PATHMTU
syscall_IPV6_DONTFRAG
)
const pktinfo = FlagDst | FlagInterface
func setControlMessage(fd int, opt *rawOpt, cf ControlFlags, on bool) error {
opt.Lock()
defer opt.Unlock()
if cf&FlagTrafficClass != 0 {
if err := setIPv6ReceiveTrafficClass(fd, on); err != nil {
return err
}
if on {
opt.set(FlagTrafficClass)
} else {
opt.clear(FlagTrafficClass)
}
}
if cf&FlagHopLimit != 0 {
if err := setIPv6ReceiveHopLimit(fd, on); err != nil {
return err
}
if on {
opt.set(FlagHopLimit)
} else {
opt.clear(FlagHopLimit)
}
}
if cf&pktinfo != 0 {
if err := setIPv6ReceivePacketInfo(fd, on); err != nil {
return err
}
if on {
opt.set(cf & pktinfo)
} else {
opt.clear(cf & pktinfo)
}
}
if cf&FlagPathMTU != 0 {
if err := setIPv6ReceivePathMTU(fd, on); err != nil {
return err
}
if on {
opt.set(FlagPathMTU)
} else {
opt.clear(FlagPathMTU)
}
}
return nil
}
func newControlMessage(opt *rawOpt) (oob []byte) {
opt.Lock()
defer opt.Unlock()
l, off := 0, 0
if opt.isset(FlagTrafficClass) {
l += syscall.CmsgSpace(4)
}
if opt.isset(FlagHopLimit) {
l += syscall.CmsgSpace(4)
}
if opt.isset(pktinfo) {
l += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if opt.isset(FlagPathMTU) {
l += syscall.CmsgSpace(syscall.SizeofIPv6MTUInfo)
}
if l > 0 {
oob = make([]byte, l)
if opt.isset(FlagTrafficClass) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVTCLASS
m.SetLen(syscall.CmsgLen(4))
off += syscall.CmsgSpace(4)
}
if opt.isset(FlagHopLimit) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVHOPLIMIT
m.SetLen(syscall.CmsgLen(4))
off += syscall.CmsgSpace(4)
}
if opt.isset(pktinfo) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_RECVPKTINFO
m.SetLen(syscall.CmsgLen(syscall.SizeofInet6Pktinfo))
off += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if opt.isset(FlagPathMTU) {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall_IPV6_RECVPATHMTU
m.SetLen(syscall.CmsgLen(syscall.SizeofIPv6MTUInfo))
off += syscall.CmsgSpace(syscall.SizeofIPv6MTUInfo)
}
}
return
}
func parseControlMessage(b []byte) (*ControlMessage, error) {
if len(b) == 0 {
return nil, nil
}
cmsgs, err := syscall.ParseSocketControlMessage(b)
if err != nil {
return nil, os.NewSyscallError("parse socket control message", err)
}
cm := &ControlMessage{}
for _, m := range cmsgs {
if m.Header.Level != ianaProtocolIPv6 {
continue
}
switch m.Header.Type {
case syscall.IPV6_TCLASS:
cm.TrafficClass = int(*(*byte)(unsafe.Pointer(&m.Data[:1][0])))
case syscall.IPV6_HOPLIMIT:
cm.HopLimit = int(*(*byte)(unsafe.Pointer(&m.Data[:1][0])))
case syscall.IPV6_PKTINFO:
pi := (*syscall.Inet6Pktinfo)(unsafe.Pointer(&m.Data[0]))
cm.Dst = pi.Addr[:]
cm.IfIndex = int(pi.Ifindex)
case syscall_IPV6_PATHMTU:
mi := (*syscall.IPv6MTUInfo)(unsafe.Pointer(&m.Data[0]))
cm.Dst = mi.Addr.Addr[:]
cm.IfIndex = int(mi.Addr.Scope_id)
cm.MTU = int(mi.Mtu)
}
}
return cm, nil
}
func marshalControlMessage(cm *ControlMessage) (oob []byte) {
if cm == nil {
return
}
l, off := 0, 0
if cm.TrafficClass > 0 {
l += syscall.CmsgSpace(4)
}
if cm.HopLimit > 0 {
l += syscall.CmsgSpace(4)
}
pion := false
if cm.Src.To4() == nil && cm.Src.To16() != nil || cm.IfIndex != 0 {
pion = true
l += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if len(cm.NextHop) == net.IPv6len {
l += syscall.CmsgSpace(syscall.SizeofSockaddrInet6)
}
if l > 0 {
oob = make([]byte, l)
if cm.TrafficClass > 0 {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_TCLASS
m.SetLen(syscall.CmsgLen(4))
data := oob[off+syscall.CmsgLen(0):]
*(*byte)(unsafe.Pointer(&data[:1][0])) = byte(cm.TrafficClass)
off += syscall.CmsgSpace(4)
}
if cm.HopLimit > 0 {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_HOPLIMIT
m.SetLen(syscall.CmsgLen(4))
data := oob[off+syscall.CmsgLen(0):]
*(*byte)(unsafe.Pointer(&data[:1][0])) = byte(cm.HopLimit)
off += syscall.CmsgSpace(4)
}
if pion {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_PKTINFO
m.SetLen(syscall.CmsgLen(syscall.SizeofInet6Pktinfo))
pi := (*syscall.Inet6Pktinfo)(unsafe.Pointer(&oob[off+syscall.CmsgLen(0)]))
if ip := cm.Src.To16(); ip != nil && ip.To4() == nil {
copy(pi.Addr[:], ip)
}
if cm.IfIndex != 0 {
pi.Ifindex = uint32(cm.IfIndex)
}
off += syscall.CmsgSpace(syscall.SizeofInet6Pktinfo)
}
if len(cm.NextHop) == net.IPv6len {
m := (*syscall.Cmsghdr)(unsafe.Pointer(&oob[off]))
m.Level = ianaProtocolIPv6
m.Type = syscall.IPV6_NEXTHOP
m.SetLen(syscall.CmsgLen(syscall.SizeofSockaddrInet6))
sa := (*syscall.RawSockaddrInet6)(unsafe.Pointer(&oob[off+syscall.CmsgLen(0)]))
sa.Family = syscall.AF_INET6
copy(sa.Addr[:], cm.NextHop)
sa.Scope_id = uint32(cm.IfIndex)
off += syscall.CmsgSpace(syscall.SizeofSockaddrInet6)
}
}
return
}

View File

@@ -0,0 +1,27 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
func setControlMessage(fd int, opt *rawOpt, cf ControlFlags, on bool) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
func newControlMessage(opt *rawOpt) (oob []byte) {
// TODO(mikio): Implement this
return nil
}
func parseControlMessage(b []byte) (*ControlMessage, error) {
// TODO(mikio): Implement this
return nil, syscall.EPLAN9
}
func marshalControlMessage(cm *ControlMessage) (oob []byte) {
// TODO(mikio): Implement this
return nil
}

View File

@@ -0,0 +1,27 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
func setControlMessage(fd syscall.Handle, opt *rawOpt, cf ControlFlags, on bool) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}
func newControlMessage(opt *rawOpt) (oob []byte) {
// TODO(mikio): Implement this
return nil
}
func parseControlMessage(b []byte) (*ControlMessage, error) {
// TODO(mikio): Implement this
return nil, syscall.EWINDOWS
}
func marshalControlMessage(cm *ControlMessage) (oob []byte) {
// TODO(mikio): Implement this
return nil
}

View File

@@ -0,0 +1,42 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"sync"
"testing"
)
func TestControlFlags(t *testing.T) {
tf := FlagInterface | FlagPathMTU
opt := rawOpt{cflags: tf | FlagHopLimit}
// This loop runs methods of raw.Opt concurrently for testing
// concurrent access to the rawOpt. The first entry shold be
// opt.set and the last entry should be opt.clear.
tfns := []func(ControlFlags){opt.set, opt.clear, opt.clear}
ch := make(chan bool)
var wg sync.WaitGroup
for i, fn := range tfns {
wg.Add(1)
go func(i int, fn func(ControlFlags)) {
defer wg.Done()
switch i {
case 0:
close(ch)
case len(tfns) - 1:
<-ch
}
opt.Lock()
defer opt.Unlock()
fn(tf)
}(i, fn)
}
wg.Wait()
if opt.isset(tf) {
t.Fatalf("got %#x; expected %#x", opt.cflags, FlagHopLimit)
}
}

View File

@@ -0,0 +1,96 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"net"
"syscall"
)
// MulticastHopLimit returns the hop limit field value for outgoing
// multicast packets.
func (c *dgramOpt) MulticastHopLimit() (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}
// SetMulticastHopLimit sets the hop limit field value for future
// outgoing multicast packets.
func (c *dgramOpt) SetMulticastHopLimit(hoplim int) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// MulticastInterface returns the default interface for multicast
// packet transmissions.
func (c *dgramOpt) MulticastInterface() (*net.Interface, error) {
// TODO(mikio): Implement this
return nil, syscall.EPLAN9
}
// SetMulticastInterface sets the default interface for future
// multicast packet transmissions.
func (c *dgramOpt) SetMulticastInterface(ifi *net.Interface) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// MulticastLoopback reports whether transmitted multicast packets
// should be copied and send back to the originator.
func (c *dgramOpt) MulticastLoopback() (bool, error) {
// TODO(mikio): Implement this
return false, syscall.EPLAN9
}
// SetMulticastLoopback sets whether transmitted multicast packets
// should be copied and send back to the originator.
func (c *dgramOpt) SetMulticastLoopback(on bool) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// JoinGroup joins the group address group on the interface ifi.
// It uses the system assigned multicast interface when ifi is nil,
// although this is not recommended because the assignment depends on
// platforms and sometimes it might require routing configuration.
func (c *dgramOpt) JoinGroup(ifi *net.Interface, group net.Addr) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// LeaveGroup leaves the group address group on the interface ifi.
func (c *dgramOpt) LeaveGroup(ifi *net.Interface, group net.Addr) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// Checksum reports whether the kernel will compute, store or verify a
// checksum for both incoming and outgoing packets. If on is true, it
// returns an offset in bytes into the data of where the checksum
// field is located.
func (c *dgramOpt) Checksum() (on bool, offset int, err error) {
// TODO(mikio): Implement this
return false, 0, syscall.EPLAN9
}
// SetChecksum enables the kernel checksum processing. If on is ture,
// the offset should be an offset in bytes into the data of where the
// checksum field is located.
func (c *dgramOpt) SetChecksum(on bool, offset int) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// ICMPFilter returns an ICMP filter.
func (c *dgramOpt) ICMPFilter() (*ICMPFilter, error) {
// TODO(mikio): Implement this
return nil, syscall.EPLAN9
}
// SetICMPFilter deploys the ICMP filter.
func (c *dgramOpt) SetICMPFilter(f *ICMPFilter) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}

View File

@@ -0,0 +1,178 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd linux netbsd openbsd windows
package ipv6
import (
"net"
"syscall"
)
// MulticastHopLimit returns the hop limit field value for outgoing
// multicast packets.
func (c *dgramOpt) MulticastHopLimit() (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return 0, err
}
return ipv6MulticastHopLimit(fd)
}
// SetMulticastHopLimit sets the hop limit field value for future
// outgoing multicast packets.
func (c *dgramOpt) SetMulticastHopLimit(hoplim int) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6MulticastHopLimit(fd, hoplim)
}
// MulticastInterface returns the default interface for multicast
// packet transmissions.
func (c *dgramOpt) MulticastInterface() (*net.Interface, error) {
if !c.ok() {
return nil, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return nil, err
}
return ipv6MulticastInterface(fd)
}
// SetMulticastInterface sets the default interface for future
// multicast packet transmissions.
func (c *dgramOpt) SetMulticastInterface(ifi *net.Interface) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6MulticastInterface(fd, ifi)
}
// MulticastLoopback reports whether transmitted multicast packets
// should be copied and send back to the originator.
func (c *dgramOpt) MulticastLoopback() (bool, error) {
if !c.ok() {
return false, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return false, err
}
return ipv6MulticastLoopback(fd)
}
// SetMulticastLoopback sets whether transmitted multicast packets
// should be copied and send back to the originator.
func (c *dgramOpt) SetMulticastLoopback(on bool) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6MulticastLoopback(fd, on)
}
// JoinGroup joins the group address group on the interface ifi.
// It uses the system assigned multicast interface when ifi is nil,
// although this is not recommended because the assignment depends on
// platforms and sometimes it might require routing configuration.
func (c *dgramOpt) JoinGroup(ifi *net.Interface, group net.Addr) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
grp := netAddrToIP16(group)
if grp == nil {
return errMissingAddress
}
return joinIPv6Group(fd, ifi, grp)
}
// LeaveGroup leaves the group address group on the interface ifi.
func (c *dgramOpt) LeaveGroup(ifi *net.Interface, group net.Addr) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
grp := netAddrToIP16(group)
if grp == nil {
return errMissingAddress
}
return leaveIPv6Group(fd, ifi, grp)
}
// Checksum reports whether the kernel will compute, store or verify a
// checksum for both incoming and outgoing packets. If on is true, it
// returns an offset in bytes into the data of where the checksum
// field is located.
func (c *dgramOpt) Checksum() (on bool, offset int, err error) {
if !c.ok() {
return false, 0, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return false, 0, err
}
return ipv6Checksum(fd)
}
// SetChecksum enables the kernel checksum processing. If on is ture,
// the offset should be an offset in bytes into the data of where the
// checksum field is located.
func (c *dgramOpt) SetChecksum(on bool, offset int) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6Checksum(fd, on, offset)
}
// ICMPFilter returns an ICMP filter.
func (c *dgramOpt) ICMPFilter() (*ICMPFilter, error) {
if !c.ok() {
return nil, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return nil, err
}
return ipv6ICMPFilter(fd)
}
// SetICMPFilter deploys the ICMP filter.
func (c *dgramOpt) SetICMPFilter(f *ICMPFilter) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6ICMPFilter(fd, f)
}

View File

@@ -0,0 +1,193 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ipv6 implements IP-level socket options for the Internet
// Protocol version 6.
//
// The package provides IP-level socket options that allow
// manipulation of IPv6 facilities. The IPv6 and socket options for
// IPv6 are defined in RFC 2460, RFC 3493 and RFC 3542.
//
//
// Unicasting
//
// The options for unicasting are available for net.TCPConn,
// net.UDPConn and net.IPConn which are created as network connections
// that use the IPv6 transport. When a single TCP connection carrying
// a data flow of multiple packets needs to indicate the flow is
// important, ipv6.Conn is used to set the traffic class field on the
// IPv6 header for each packet.
//
// ln, err := net.Listen("tcp6", "[::]:1024")
// if err != nil {
// // error handling
// }
// defer ln.Close()
// for {
// c, err := ln.Accept()
// if err != nil {
// // error handling
// }
// go func(c net.Conn) {
// defer c.Close()
//
// The outgoing packets will be labeled DiffServ assured forwarding
// class 1 low drop precedence, as known as AF11 packets.
//
// if err := ipv6.NewConn(c).SetTrafficClass(DiffServAF11); err != nil {
// // error handling
// }
// if _, err := c.Write(data); err != nil {
// // error handling
// }
// }(c)
// }
//
//
// Multicasting
//
// The options for multicasting are available for net.UDPConn and
// net.IPconn which are created as network connections that use the
// IPv6 transport. A few network facilities must be prepared before
// you begin multicasting, at a minimum joining network interfaces and
// multicast groups.
//
// en0, err := net.InterfaceByName("en0")
// if err != nil {
// // error handling
// }
// en1, err := net.InterfaceByIndex(911)
// if err != nil {
// // error handling
// }
// group := net.ParseIP("ff02::114")
//
// First, an application listens to an appropriate address with an
// appropriate service port.
//
// c, err := net.ListenPacket("udp6", "[::]:1024")
// if err != nil {
// // error handling
// }
// defer c.Close()
//
// Second, the application joins multicast groups, starts listening to
// the groups on the specified network interfaces. Note that the
// service port for transport layer protocol does not matter with this
// operation as joining groups affects only network and link layer
// protocols, such as IPv6 and Ethernet.
//
// p := ipv6.NewPacketConn(c)
// if err := p.JoinGroup(en0, &net.UDPAddr{IP: group}); err != nil {
// // error handling
// }
// if err := p.JoinGroup(en1, &net.UDPAddr{IP: group}); err != nil {
// // error handling
// }
//
// The application might set per packet control message transmissions
// between the protocol stack within the kernel. When the application
// needs a destination address on an incoming packet,
// SetControlMessage of ipv6.PacketConn is used to enable control
// message transmissons.
//
// if err := p.SetControlMessage(ipv6.FlagDst, true); err != nil {
// // error handling
// }
//
// The application could identify whether the received packets are
// of interest by using the control message that contains the
// destination address of the received packet.
//
// b := make([]byte, 1500)
// for {
// n, rcm, src, err := p.ReadFrom(b)
// if err != nil {
// // error handling
// }
// if rcm.Dst.IsMulticast() {
// if rcm.Dst.Equal(group)
// // joined group, do something
// } else {
// // unknown group, discard
// continue
// }
// }
//
// The application can also send both unicast and multicast packets.
//
// p.SetTrafficClass(DiffServCS0)
// p.SetHopLimit(16)
// if _, err := p.WriteTo(data[:n], nil, src); err != nil {
// // error handling
// }
// dst := &net.UDPAddr{IP: group, Port: 1024}
// wcm := ipv6.ControlMessage{TrafficClass: DiffServCS7, HopLimit: 1}
// for _, ifi := range []*net.Interface{en0, en1} {
// wcm.IfIndex = ifi.Index
// if _, err := p.WriteTo(data[:n], &wcm, dst); err != nil {
// // error handling
// }
// }
// }
//
//
// More multicasting
//
// An application that uses PacketConn may join multiple multicast
// groups. For example, a UDP listener with port 1024 might join two
// different groups across over two different network interfaces by
// using:
//
// c, err := net.ListenPacket("udp6", "[::]:1024")
// if err != nil {
// // error handling
// }
// defer c.Close()
// p := ipv6.NewPacketConn(c)
// if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::1:114")}); err != nil {
// // error handling
// }
// if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::2:114")}); err != nil {
// // error handling
// }
// if err := p.JoinGroup(en1, &net.UDPAddr{IP: net.ParseIP("ff02::2:114")}); err != nil {
// // error handling
// }
//
// It is possible for multiple UDP listeners that listen on the same
// UDP port to join the same multicast group. The net package will
// provide a socket that listens to a wildcard address with reusable
// UDP port when an appropriate multicast address prefix is passed to
// the net.ListenPacket or net.ListenUDP.
//
// c1, err := net.ListenPacket("udp6", "[ff02::]:1024")
// if err != nil {
// // error handling
// }
// defer c1.Close()
// c2, err := net.ListenPacket("udp6", "[ff02::]:1024")
// if err != nil {
// // error handling
// }
// defer c2.Close()
// p1 := ipv6.NewPacketConn(c1)
// if err := p1.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil {
// // error handling
// }
// p2 := ipv6.NewPacketConn(c2)
// if err := p2.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil {
// // error handling
// }
//
// Also it is possible for the application to leave or rejoin a
// multicast group on the network interface.
//
// if err := p.LeaveGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff02::114")}); err != nil {
// // error handling
// }
// if err := p.JoinGroup(en0, &net.UDPAddr{IP: net.ParseIP("ff01::114")}); err != nil {
// // error handling
// }
package ipv6

View File

@@ -0,0 +1,119 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"net"
"syscall"
"time"
)
// A Conn represents a network endpoint that uses IPv6 transport.
// It allows to set basic IP-level socket options such as traffic
// class and hop limit.
type Conn struct {
genericOpt
}
type genericOpt struct {
net.Conn
}
func (c *genericOpt) ok() bool { return c != nil && c.Conn != nil }
// PathMTU returns a path MTU value for the destination associated
// with the endpoint.
func (c *Conn) PathMTU() (int, error) {
if !c.genericOpt.ok() {
return 0, syscall.EINVAL
}
fd, err := c.genericOpt.sysfd()
if err != nil {
return 0, err
}
return ipv6PathMTU(fd)
}
// NewConn returns a new Conn.
func NewConn(c net.Conn) *Conn {
return &Conn{
genericOpt: genericOpt{Conn: c},
}
}
// A PacketConn represents a packet network endpoint that uses IPv6
// transport. It is used to control several IP-level socket options
// including IPv6 header manipulation. It also provides datagram
// based network I/O methods specific to the IPv6 and higher layer
// protocols such as OSPF, GRE, and UDP.
type PacketConn struct {
genericOpt
dgramOpt
payloadHandler
}
type dgramOpt struct {
net.PacketConn
}
func (c *dgramOpt) ok() bool { return c != nil && c.PacketConn != nil }
// SetControlMessage allows to receive the per packet basis IP-level
// socket options.
func (c *PacketConn) SetControlMessage(cf ControlFlags, on bool) error {
if !c.payloadHandler.ok() {
return syscall.EINVAL
}
fd, err := c.payloadHandler.sysfd()
if err != nil {
return err
}
return setControlMessage(fd, &c.payloadHandler.rawOpt, cf, on)
}
// SetDeadline sets the read and write deadlines associated with the
// endpoint.
func (c *PacketConn) SetDeadline(t time.Time) error {
if !c.payloadHandler.ok() {
return syscall.EINVAL
}
return c.payloadHandler.SetDeadline(t)
}
// SetReadDeadline sets the read deadline associated with the
// endpoint.
func (c *PacketConn) SetReadDeadline(t time.Time) error {
if !c.payloadHandler.ok() {
return syscall.EINVAL
}
return c.payloadHandler.SetReadDeadline(t)
}
// SetWriteDeadline sets the write deadline associated with the
// endpoint.
func (c *PacketConn) SetWriteDeadline(t time.Time) error {
if !c.payloadHandler.ok() {
return syscall.EINVAL
}
return c.payloadHandler.SetWriteDeadline(t)
}
// Close closes the endpoint.
func (c *PacketConn) Close() error {
if !c.payloadHandler.ok() {
return syscall.EINVAL
}
return c.payloadHandler.Close()
}
// NewPacketConn returns a new PacketConn using c as its underlying
// transport.
func NewPacketConn(c net.PacketConn) *PacketConn {
return &PacketConn{
genericOpt: genericOpt{Conn: c.(net.Conn)},
dgramOpt: dgramOpt{PacketConn: c},
payloadHandler: payloadHandler{PacketConn: c},
}
}

View File

@@ -0,0 +1,241 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// This program generates internet protocol constatns and tables by
// reading IANA protocol registries.
//
// Usage:
// go run gen.go > iana.go
package main
import (
"bytes"
"encoding/xml"
"fmt"
"go/format"
"io"
"net/http"
"os"
"strconv"
"strings"
)
var registries = []struct {
url string
parse func(io.Writer, io.Reader) error
}{
{
"http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml",
parseICMPv6Parameters,
},
{
"http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml",
parseProtocolNumbers,
},
}
func main() {
var bb bytes.Buffer
fmt.Fprintf(&bb, "// go run gen.go\n")
fmt.Fprintf(&bb, "// GENERATED BY THE COMMAND ABOVE; DO NOT EDIT\n\n")
fmt.Fprintf(&bb, "package ipv6\n\n")
for _, r := range registries {
resp, err := http.Get(r.url)
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
fmt.Fprintf(os.Stderr, "got HTTP status code %v for %v\n", resp.StatusCode, r.url)
os.Exit(1)
}
if err := r.parse(&bb, resp.Body); err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
fmt.Fprintf(&bb, "\n")
}
b, err := format.Source(bb.Bytes())
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
os.Stdout.Write(b)
}
func parseICMPv6Parameters(w io.Writer, r io.Reader) error {
dec := xml.NewDecoder(r)
var icp icmpv6Parameters
if err := dec.Decode(&icp); err != nil {
return err
}
prs := icp.escape()
fmt.Fprintf(w, "// %s, Updated: %s\n", icp.Title, icp.Updated)
fmt.Fprintf(w, "const (\n")
for _, pr := range prs {
if pr.Name == "" {
continue
}
fmt.Fprintf(w, "ICMPType%s ICMPType = %d", pr.Name, pr.Value)
fmt.Fprintf(w, "// %s\n", pr.OrigName)
}
fmt.Fprintf(w, ")\n\n")
fmt.Fprintf(w, "// %s, Updated: %s\n", icp.Title, icp.Updated)
fmt.Fprintf(w, "var icmpTypes = map[ICMPType]string{\n")
for _, pr := range prs {
if pr.Name == "" {
continue
}
fmt.Fprintf(w, "%d: %q,\n", pr.Value, strings.ToLower(pr.OrigName))
}
fmt.Fprintf(w, "}\n")
return nil
}
type icmpv6Parameters struct {
XMLName xml.Name `xml:"registry"`
Title string `xml:"title"`
Updated string `xml:"updated"`
Registries []struct {
Title string `xml:"title"`
Records []struct {
Value string `xml:"value"`
Name string `xml:"name"`
} `xml:"record"`
} `xml:"registry"`
}
type canonICMPv6ParamRecord struct {
OrigName string
Name string
Value int
}
func (icp *icmpv6Parameters) escape() []canonICMPv6ParamRecord {
id := -1
for i, r := range icp.Registries {
if strings.Contains(r.Title, "Type") || strings.Contains(r.Title, "type") {
id = i
break
}
}
if id < 0 {
return nil
}
prs := make([]canonICMPv6ParamRecord, len(icp.Registries[id].Records))
sr := strings.NewReplacer(
"Messages", "",
"Message", "",
"ICMP", "",
"+", "P",
"-", "",
"/", "",
".", "",
" ", "",
)
for i, pr := range icp.Registries[id].Records {
if strings.Contains(pr.Name, "Reserved") ||
strings.Contains(pr.Name, "Unassigned") ||
strings.Contains(pr.Name, "Deprecated") ||
strings.Contains(pr.Name, "Experiment") ||
strings.Contains(pr.Name, "experiment") {
continue
}
ss := strings.Split(pr.Name, "\n")
if len(ss) > 1 {
prs[i].Name = strings.Join(ss, " ")
} else {
prs[i].Name = ss[0]
}
s := strings.TrimSpace(prs[i].Name)
prs[i].OrigName = s
prs[i].Name = sr.Replace(s)
prs[i].Value, _ = strconv.Atoi(pr.Value)
}
return prs
}
func parseProtocolNumbers(w io.Writer, r io.Reader) error {
dec := xml.NewDecoder(r)
var pn protocolNumbers
if err := dec.Decode(&pn); err != nil {
return err
}
prs := pn.escape()
fmt.Fprintf(w, "// %s, Updated: %s\n", pn.Title, pn.Updated)
fmt.Fprintf(w, "const (\n")
for _, pr := range prs {
if pr.Name == "" {
continue
}
fmt.Fprintf(w, "ianaProtocol%s = %d", pr.Name, pr.Value)
s := pr.Descr
if s == "" {
s = pr.OrigName
}
fmt.Fprintf(w, "// %s\n", s)
}
fmt.Fprintf(w, ")\n")
return nil
}
type protocolNumbers struct {
XMLName xml.Name `xml:"registry"`
Title string `xml:"title"`
Updated string `xml:"updated"`
RegTitle string `xml:"registry>title"`
Note string `xml:"registry>note"`
Records []struct {
Value string `xml:"value"`
Name string `xml:"name"`
Descr string `xml:"description"`
} `xml:"registry>record"`
}
type canonProtocolRecord struct {
OrigName string
Name string
Descr string
Value int
}
func (pn *protocolNumbers) escape() []canonProtocolRecord {
prs := make([]canonProtocolRecord, len(pn.Records))
sr := strings.NewReplacer(
"-in-", "in",
"-within-", "within",
"-over-", "over",
"+", "P",
"-", "",
"/", "",
".", "",
" ", "",
)
for i, pr := range pn.Records {
prs[i].OrigName = pr.Name
s := strings.TrimSpace(pr.Name)
switch pr.Name {
case "ISIS over IPv4":
prs[i].Name = "ISIS"
case "manet":
prs[i].Name = "MANET"
default:
prs[i].Name = sr.Replace(s)
}
ss := strings.Split(pr.Descr, "\n")
for i := range ss {
ss[i] = strings.TrimSpace(ss[i])
}
if len(ss) > 1 {
prs[i].Descr = strings.Join(ss, " ")
} else {
prs[i].Descr = ss[0]
}
prs[i].Value, _ = strconv.Atoi(pr.Value)
}
return prs
}

View File

@@ -0,0 +1,34 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
// TrafficClass returns the traffic class field value for outgoing
// packets.
func (c *genericOpt) TrafficClass() (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}
// SetTrafficClass sets the traffic class field value for future
// outgoing packets.
func (c *genericOpt) SetTrafficClass(tclass int) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}
// HopLimit returns the hop limit field value for outgoing packets.
func (c *genericOpt) HopLimit() (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}
// SetHopLimit sets the hop limit field value for future outgoing
// packets.
func (c *genericOpt) SetHopLimit(hoplim int) error {
// TODO(mikio): Implement this
return syscall.EPLAN9
}

View File

@@ -0,0 +1,60 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd linux netbsd openbsd windows
package ipv6
import "syscall"
// TrafficClass returns the traffic class field value for outgoing
// packets.
func (c *genericOpt) TrafficClass() (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return 0, err
}
return ipv6TrafficClass(fd)
}
// SetTrafficClass sets the traffic class field value for future
// outgoing packets.
func (c *genericOpt) SetTrafficClass(tclass int) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6TrafficClass(fd, tclass)
}
// HopLimit returns the hop limit field value for outgoing packets.
func (c *genericOpt) HopLimit() (int, error) {
if !c.ok() {
return 0, syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return 0, err
}
return ipv6HopLimit(fd)
}
// SetHopLimit sets the hop limit field value for future outgoing
// packets.
func (c *genericOpt) SetHopLimit(hoplim int) error {
if !c.ok() {
return syscall.EINVAL
}
fd, err := c.sysfd()
if err != nil {
return err
}
return setIPv6HopLimit(fd, hoplim)
}

View File

@@ -0,0 +1,195 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// This program generates internet protocol constants by reading IANA
// protocol registries.
//
// Usage:
// go run gentest.go > iana_test.go
package main
import (
"bytes"
"encoding/xml"
"fmt"
"go/format"
"io"
"net/http"
"os"
"strconv"
"strings"
)
var registries = []struct {
url string
parse func(io.Writer, io.Reader) error
}{
{
"http://www.iana.org/assignments/dscp-registry/dscp-registry.xml",
parseDSCPRegistry,
},
{
"http://www.iana.org/assignments/ipv4-tos-byte/ipv4-tos-byte.xml",
parseTOSTCByte,
},
}
func main() {
var bb bytes.Buffer
fmt.Fprintf(&bb, "// go run gentest.go\n")
fmt.Fprintf(&bb, "// GENERATED BY THE COMMAND ABOVE; DO NOT EDIT\n\n")
fmt.Fprintf(&bb, "package ipv6_test\n\n")
for _, r := range registries {
resp, err := http.Get(r.url)
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
fmt.Fprintf(os.Stderr, "got HTTP status code %v for %v\n", resp.StatusCode, r.url)
os.Exit(1)
}
if err := r.parse(&bb, resp.Body); err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
fmt.Fprintf(&bb, "\n")
}
b, err := format.Source(bb.Bytes())
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
os.Stdout.Write(b)
}
func parseDSCPRegistry(w io.Writer, r io.Reader) error {
dec := xml.NewDecoder(r)
var dr dscpRegistry
if err := dec.Decode(&dr); err != nil {
return err
}
drs := dr.escape()
fmt.Fprintf(w, "// %s, Updated: %s\n", dr.Title, dr.Updated)
fmt.Fprintf(w, "const (\n")
for _, dr := range drs {
fmt.Fprintf(w, "DiffServ%s = %#x", dr.Name, dr.Value)
fmt.Fprintf(w, "// %s\n", dr.OrigName)
}
fmt.Fprintf(w, ")\n")
return nil
}
type dscpRegistry struct {
XMLName xml.Name `xml:"registry"`
Title string `xml:"title"`
Updated string `xml:"updated"`
Note string `xml:"note"`
RegTitle string `xml:"registry>title"`
PoolRecords []struct {
Name string `xml:"name"`
Space string `xml:"space"`
} `xml:"registry>record"`
Records []struct {
Name string `xml:"name"`
Space string `xml:"space"`
} `xml:"registry>registry>record"`
}
type canonDSCPRecord struct {
OrigName string
Name string
Value int
}
func (drr *dscpRegistry) escape() []canonDSCPRecord {
drs := make([]canonDSCPRecord, len(drr.Records))
sr := strings.NewReplacer(
"+", "",
"-", "",
"/", "",
".", "",
" ", "",
)
for i, dr := range drr.Records {
s := strings.TrimSpace(dr.Name)
drs[i].OrigName = s
drs[i].Name = sr.Replace(s)
n, err := strconv.ParseUint(dr.Space, 2, 8)
if err != nil {
continue
}
drs[i].Value = int(n) << 2
}
return drs
}
func parseTOSTCByte(w io.Writer, r io.Reader) error {
dec := xml.NewDecoder(r)
var ttb tosTCByte
if err := dec.Decode(&ttb); err != nil {
return err
}
trs := ttb.escape()
fmt.Fprintf(w, "// %s, Updated: %s\n", ttb.Title, ttb.Updated)
fmt.Fprintf(w, "const (\n")
for _, tr := range trs {
fmt.Fprintf(w, "%s = %#x", tr.Keyword, tr.Value)
fmt.Fprintf(w, "// %s\n", tr.OrigKeyword)
}
fmt.Fprintf(w, ")\n")
return nil
}
type tosTCByte struct {
XMLName xml.Name `xml:"registry"`
Title string `xml:"title"`
Updated string `xml:"updated"`
Note string `xml:"note"`
RegTitle string `xml:"registry>title"`
Records []struct {
Binary string `xml:"binary"`
Keyword string `xml:"keyword"`
} `xml:"registry>record"`
}
type canonTOSTCByteRecord struct {
OrigKeyword string
Keyword string
Value int
}
func (ttb *tosTCByte) escape() []canonTOSTCByteRecord {
trs := make([]canonTOSTCByteRecord, len(ttb.Records))
sr := strings.NewReplacer(
"Capable", "",
"(", "",
")", "",
"+", "",
"-", "",
"/", "",
".", "",
" ", "",
)
for i, tr := range ttb.Records {
s := strings.TrimSpace(tr.Keyword)
trs[i].OrigKeyword = s
ss := strings.Split(s, " ")
if len(ss) > 1 {
trs[i].Keyword = strings.Join(ss[1:], " ")
} else {
trs[i].Keyword = ss[0]
}
trs[i].Keyword = sr.Replace(trs[i].Keyword)
n, err := strconv.ParseUint(tr.Binary, 2, 8)
if err != nil {
continue
}
trs[i].Value = int(n)
}
return trs
}

View File

@@ -0,0 +1,28 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "net"
func boolint(b bool) int {
if b {
return 1
}
return 0
}
func netAddrToIP16(a net.Addr) net.IP {
switch v := a.(type) {
case *net.UDPAddr:
if ip := v.IP.To16(); ip != nil && ip.To4() == nil {
return ip
}
case *net.IPAddr:
if ip := v.IP.To16(); ip != nil && ip.To4() == nil {
return ip
}
}
return nil
}

View File

@@ -0,0 +1,22 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
func (c *genericOpt) sysfd() (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}
func (c *dgramOpt) sysfd() (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}
func (c *payloadHandler) sysfd() (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}

View File

@@ -0,0 +1,46 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd linux netbsd openbsd
package ipv6
import (
"net"
"reflect"
)
func (c *genericOpt) sysfd() (int, error) {
switch p := c.Conn.(type) {
case *net.TCPConn, *net.UDPConn, *net.IPConn:
return sysfd(p)
}
return 0, errInvalidConnType
}
func (c *dgramOpt) sysfd() (int, error) {
switch p := c.PacketConn.(type) {
case *net.UDPConn, *net.IPConn:
return sysfd(p.(net.Conn))
}
return 0, errInvalidConnType
}
func (c *payloadHandler) sysfd() (int, error) {
return sysfd(c.PacketConn.(net.Conn))
}
func sysfd(c net.Conn) (int, error) {
cv := reflect.ValueOf(c)
switch ce := cv.Elem(); ce.Kind() {
case reflect.Struct:
nfd := ce.FieldByName("conn").FieldByName("fd")
switch fe := nfd.Elem(); fe.Kind() {
case reflect.Struct:
fd := fe.FieldByName("sysfd")
return int(fd.Int()), nil
}
}
return 0, errInvalidConnType
}

View File

@@ -0,0 +1,45 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"net"
"reflect"
"syscall"
)
func (c *genericOpt) sysfd() (syscall.Handle, error) {
switch p := c.Conn.(type) {
case *net.TCPConn, *net.UDPConn, *net.IPConn:
return sysfd(p)
}
return syscall.InvalidHandle, errInvalidConnType
}
func (c *dgramOpt) sysfd() (syscall.Handle, error) {
switch p := c.PacketConn.(type) {
case *net.UDPConn, *net.IPConn:
return sysfd(p.(net.Conn))
}
return syscall.InvalidHandle, errInvalidConnType
}
func (c *payloadHandler) sysfd() (syscall.Handle, error) {
return sysfd(c.PacketConn.(net.Conn))
}
func sysfd(c net.Conn) (syscall.Handle, error) {
cv := reflect.ValueOf(c)
switch ce := cv.Elem(); ce.Kind() {
case reflect.Struct:
netfd := ce.FieldByName("conn").FieldByName("fd")
switch fe := netfd.Elem(); fe.Kind() {
case reflect.Struct:
fd := fe.FieldByName("sysfd")
return syscall.Handle(fd.Uint()), nil
}
}
return syscall.InvalidHandle, errInvalidConnType
}

View File

@@ -0,0 +1,224 @@
// go run gen.go
// GENERATED BY THE COMMAND ABOVE; DO NOT EDIT
package ipv6
// Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2013-07-03
const (
ICMPTypeDestinationUnreachable ICMPType = 1 // Destination Unreachable
ICMPTypePacketTooBig ICMPType = 2 // Packet Too Big
ICMPTypeTimeExceeded ICMPType = 3 // Time Exceeded
ICMPTypeParameterProblem ICMPType = 4 // Parameter Problem
ICMPTypeEchoRequest ICMPType = 128 // Echo Request
ICMPTypeEchoReply ICMPType = 129 // Echo Reply
ICMPTypeMulticastListenerQuery ICMPType = 130 // Multicast Listener Query
ICMPTypeMulticastListenerReport ICMPType = 131 // Multicast Listener Report
ICMPTypeMulticastListenerDone ICMPType = 132 // Multicast Listener Done
ICMPTypeRouterSolicitation ICMPType = 133 // Router Solicitation
ICMPTypeRouterAdvertisement ICMPType = 134 // Router Advertisement
ICMPTypeNeighborSolicitation ICMPType = 135 // Neighbor Solicitation
ICMPTypeNeighborAdvertisement ICMPType = 136 // Neighbor Advertisement
ICMPTypeRedirect ICMPType = 137 // Redirect Message
ICMPTypeRouterRenumbering ICMPType = 138 // Router Renumbering
ICMPTypeNodeInformationQuery ICMPType = 139 // ICMP Node Information Query
ICMPTypeNodeInformationResponse ICMPType = 140 // ICMP Node Information Response
ICMPTypeInverseNeighborDiscoverySolicitation ICMPType = 141 // Inverse Neighbor Discovery Solicitation Message
ICMPTypeInverseNeighborDiscoveryAdvertisement ICMPType = 142 // Inverse Neighbor Discovery Advertisement Message
ICMPTypeVersion2MulticastListenerReport ICMPType = 143 // Version 2 Multicast Listener Report
ICMPTypeHomeAgentAddressDiscoveryRequest ICMPType = 144 // Home Agent Address Discovery Request Message
ICMPTypeHomeAgentAddressDiscoveryReply ICMPType = 145 // Home Agent Address Discovery Reply Message
ICMPTypeMobilePrefixSolicitation ICMPType = 146 // Mobile Prefix Solicitation
ICMPTypeMobilePrefixAdvertisement ICMPType = 147 // Mobile Prefix Advertisement
ICMPTypeCertificationPathSolicitation ICMPType = 148 // Certification Path Solicitation Message
ICMPTypeCertificationPathAdvertisement ICMPType = 149 // Certification Path Advertisement Message
ICMPTypeMulticastRouterAdvertisement ICMPType = 151 // Multicast Router Advertisement
ICMPTypeMulticastRouterSolicitation ICMPType = 152 // Multicast Router Solicitation
ICMPTypeMulticastRouterTermination ICMPType = 153 // Multicast Router Termination
ICMPTypeFMIPv6 ICMPType = 154 // FMIPv6 Messages
ICMPTypeRPLControl ICMPType = 155 // RPL Control Message
ICMPTypeILNPv6LocatorUpdate ICMPType = 156 // ILNPv6 Locator Update Message
ICMPTypeDuplicateAddressRequest ICMPType = 157 // Duplicate Address Request
ICMPTypeDuplicateAddressConfirmation ICMPType = 158 // Duplicate Address Confirmation
)
// Internet Control Message Protocol version 6 (ICMPv6) Parameters, Updated: 2013-07-03
var icmpTypes = map[ICMPType]string{
1: "destination unreachable",
2: "packet too big",
3: "time exceeded",
4: "parameter problem",
128: "echo request",
129: "echo reply",
130: "multicast listener query",
131: "multicast listener report",
132: "multicast listener done",
133: "router solicitation",
134: "router advertisement",
135: "neighbor solicitation",
136: "neighbor advertisement",
137: "redirect message",
138: "router renumbering",
139: "icmp node information query",
140: "icmp node information response",
141: "inverse neighbor discovery solicitation message",
142: "inverse neighbor discovery advertisement message",
143: "version 2 multicast listener report",
144: "home agent address discovery request message",
145: "home agent address discovery reply message",
146: "mobile prefix solicitation",
147: "mobile prefix advertisement",
148: "certification path solicitation message",
149: "certification path advertisement message",
151: "multicast router advertisement",
152: "multicast router solicitation",
153: "multicast router termination",
154: "fmipv6 messages",
155: "rpl control message",
156: "ilnpv6 locator update message",
157: "duplicate address request",
158: "duplicate address confirmation",
}
// Protocol Numbers, Updated: 2013-02-17
const (
ianaProtocolHOPOPT = 0 // IPv6 Hop-by-Hop Option
ianaProtocolICMP = 1 // Internet Control Message
ianaProtocolIGMP = 2 // Internet Group Management
ianaProtocolGGP = 3 // Gateway-to-Gateway
ianaProtocolIPv4 = 4 // IPv4 encapsulation
ianaProtocolST = 5 // Stream
ianaProtocolTCP = 6 // Transmission Control
ianaProtocolCBT = 7 // CBT
ianaProtocolEGP = 8 // Exterior Gateway Protocol
ianaProtocolIGP = 9 // any private interior gateway (used by Cisco for their IGRP)
ianaProtocolBBNRCCMON = 10 // BBN RCC Monitoring
ianaProtocolNVPII = 11 // Network Voice Protocol
ianaProtocolPUP = 12 // PUP
ianaProtocolARGUS = 13 // ARGUS
ianaProtocolEMCON = 14 // EMCON
ianaProtocolXNET = 15 // Cross Net Debugger
ianaProtocolCHAOS = 16 // Chaos
ianaProtocolUDP = 17 // User Datagram
ianaProtocolMUX = 18 // Multiplexing
ianaProtocolDCNMEAS = 19 // DCN Measurement Subsystems
ianaProtocolHMP = 20 // Host Monitoring
ianaProtocolPRM = 21 // Packet Radio Measurement
ianaProtocolXNSIDP = 22 // XEROX NS IDP
ianaProtocolTRUNK1 = 23 // Trunk-1
ianaProtocolTRUNK2 = 24 // Trunk-2
ianaProtocolLEAF1 = 25 // Leaf-1
ianaProtocolLEAF2 = 26 // Leaf-2
ianaProtocolRDP = 27 // Reliable Data Protocol
ianaProtocolIRTP = 28 // Internet Reliable Transaction
ianaProtocolISOTP4 = 29 // ISO Transport Protocol Class 4
ianaProtocolNETBLT = 30 // Bulk Data Transfer Protocol
ianaProtocolMFENSP = 31 // MFE Network Services Protocol
ianaProtocolMERITINP = 32 // MERIT Internodal Protocol
ianaProtocolDCCP = 33 // Datagram Congestion Control Protocol
ianaProtocol3PC = 34 // Third Party Connect Protocol
ianaProtocolIDPR = 35 // Inter-Domain Policy Routing Protocol
ianaProtocolXTP = 36 // XTP
ianaProtocolDDP = 37 // Datagram Delivery Protocol
ianaProtocolIDPRCMTP = 38 // IDPR Control Message Transport Proto
ianaProtocolTPPP = 39 // TP++ Transport Protocol
ianaProtocolIL = 40 // IL Transport Protocol
ianaProtocolIPv6 = 41 // IPv6 encapsulation
ianaProtocolSDRP = 42 // Source Demand Routing Protocol
ianaProtocolIPv6Route = 43 // Routing Header for IPv6
ianaProtocolIPv6Frag = 44 // Fragment Header for IPv6
ianaProtocolIDRP = 45 // Inter-Domain Routing Protocol
ianaProtocolRSVP = 46 // Reservation Protocol
ianaProtocolGRE = 47 // Generic Routing Encapsulation
ianaProtocolDSR = 48 // Dynamic Source Routing Protocol
ianaProtocolBNA = 49 // BNA
ianaProtocolESP = 50 // Encap Security Payload
ianaProtocolAH = 51 // Authentication Header
ianaProtocolINLSP = 52 // Integrated Net Layer Security TUBA
ianaProtocolSWIPE = 53 // IP with Encryption
ianaProtocolNARP = 54 // NBMA Address Resolution Protocol
ianaProtocolMOBILE = 55 // IP Mobility
ianaProtocolTLSP = 56 // Transport Layer Security Protocol using Kryptonet key management
ianaProtocolSKIP = 57 // SKIP
ianaProtocolIPv6ICMP = 58 // ICMP for IPv6
ianaProtocolIPv6NoNxt = 59 // No Next Header for IPv6
ianaProtocolIPv6Opts = 60 // Destination Options for IPv6
ianaProtocolCFTP = 62 // CFTP
ianaProtocolSATEXPAK = 64 // SATNET and Backroom EXPAK
ianaProtocolKRYPTOLAN = 65 // Kryptolan
ianaProtocolRVD = 66 // MIT Remote Virtual Disk Protocol
ianaProtocolIPPC = 67 // Internet Pluribus Packet Core
ianaProtocolSATMON = 69 // SATNET Monitoring
ianaProtocolVISA = 70 // VISA Protocol
ianaProtocolIPCV = 71 // Internet Packet Core Utility
ianaProtocolCPNX = 72 // Computer Protocol Network Executive
ianaProtocolCPHB = 73 // Computer Protocol Heart Beat
ianaProtocolWSN = 74 // Wang Span Network
ianaProtocolPVP = 75 // Packet Video Protocol
ianaProtocolBRSATMON = 76 // Backroom SATNET Monitoring
ianaProtocolSUNND = 77 // SUN ND PROTOCOL-Temporary
ianaProtocolWBMON = 78 // WIDEBAND Monitoring
ianaProtocolWBEXPAK = 79 // WIDEBAND EXPAK
ianaProtocolISOIP = 80 // ISO Internet Protocol
ianaProtocolVMTP = 81 // VMTP
ianaProtocolSECUREVMTP = 82 // SECURE-VMTP
ianaProtocolVINES = 83 // VINES
ianaProtocolTTP = 84 // TTP
ianaProtocolIPTM = 84 // Protocol Internet Protocol Traffic Manager
ianaProtocolNSFNETIGP = 85 // NSFNET-IGP
ianaProtocolDGP = 86 // Dissimilar Gateway Protocol
ianaProtocolTCF = 87 // TCF
ianaProtocolEIGRP = 88 // EIGRP
ianaProtocolOSPFIGP = 89 // OSPFIGP
ianaProtocolSpriteRPC = 90 // Sprite RPC Protocol
ianaProtocolLARP = 91 // Locus Address Resolution Protocol
ianaProtocolMTP = 92 // Multicast Transport Protocol
ianaProtocolAX25 = 93 // AX.25 Frames
ianaProtocolIPIP = 94 // IP-within-IP Encapsulation Protocol
ianaProtocolMICP = 95 // Mobile Internetworking Control Pro.
ianaProtocolSCCSP = 96 // Semaphore Communications Sec. Pro.
ianaProtocolETHERIP = 97 // Ethernet-within-IP Encapsulation
ianaProtocolENCAP = 98 // Encapsulation Header
ianaProtocolGMTP = 100 // GMTP
ianaProtocolIFMP = 101 // Ipsilon Flow Management Protocol
ianaProtocolPNNI = 102 // PNNI over IP
ianaProtocolPIM = 103 // Protocol Independent Multicast
ianaProtocolARIS = 104 // ARIS
ianaProtocolSCPS = 105 // SCPS
ianaProtocolQNX = 106 // QNX
ianaProtocolAN = 107 // Active Networks
ianaProtocolIPComp = 108 // IP Payload Compression Protocol
ianaProtocolSNP = 109 // Sitara Networks Protocol
ianaProtocolCompaqPeer = 110 // Compaq Peer Protocol
ianaProtocolIPXinIP = 111 // IPX in IP
ianaProtocolVRRP = 112 // Virtual Router Redundancy Protocol
ianaProtocolPGM = 113 // PGM Reliable Transport Protocol
ianaProtocolL2TP = 115 // Layer Two Tunneling Protocol
ianaProtocolDDX = 116 // D-II Data Exchange (DDX)
ianaProtocolIATP = 117 // Interactive Agent Transfer Protocol
ianaProtocolSTP = 118 // Schedule Transfer Protocol
ianaProtocolSRP = 119 // SpectraLink Radio Protocol
ianaProtocolUTI = 120 // UTI
ianaProtocolSMP = 121 // Simple Message Protocol
ianaProtocolSM = 122 // SM
ianaProtocolPTP = 123 // Performance Transparency Protocol
ianaProtocolISIS = 124 // ISIS over IPv4
ianaProtocolFIRE = 125 // FIRE
ianaProtocolCRTP = 126 // Combat Radio Transport Protocol
ianaProtocolCRUDP = 127 // Combat Radio User Datagram
ianaProtocolSSCOPMCE = 128 // SSCOPMCE
ianaProtocolIPLT = 129 // IPLT
ianaProtocolSPS = 130 // Secure Packet Shield
ianaProtocolPIPE = 131 // Private IP Encapsulation within IP
ianaProtocolSCTP = 132 // Stream Control Transmission Protocol
ianaProtocolFC = 133 // Fibre Channel
ianaProtocolRSVPE2EIGNORE = 134 // RSVP-E2E-IGNORE
ianaProtocolMobilityHeader = 135 // Mobility Header
ianaProtocolUDPLite = 136 // UDPLite
ianaProtocolMPLSinIP = 137 // MPLS-in-IP
ianaProtocolMANET = 138 // MANET Protocols
ianaProtocolHIP = 139 // Host Identity Protocol
ianaProtocolShim6 = 140 // Shim6 Protocol
ianaProtocolWESP = 141 // Wrapped Encapsulating Security Payload
ianaProtocolROHC = 142 // Robust Header Compression
ianaProtocolReserved = 255 // Reserved
)

View File

@@ -0,0 +1,38 @@
// go run gentest.go
// GENERATED BY THE COMMAND ABOVE; DO NOT EDIT
package ipv6_test
// Differentiated Services Field Codepoints (DSCP), Updated: 2013-06-25
const (
DiffServCS0 = 0x0 // CS0
DiffServCS1 = 0x20 // CS1
DiffServCS2 = 0x40 // CS2
DiffServCS3 = 0x60 // CS3
DiffServCS4 = 0x80 // CS4
DiffServCS5 = 0xa0 // CS5
DiffServCS6 = 0xc0 // CS6
DiffServCS7 = 0xe0 // CS7
DiffServAF11 = 0x28 // AF11
DiffServAF12 = 0x30 // AF12
DiffServAF13 = 0x38 // AF13
DiffServAF21 = 0x48 // AF21
DiffServAF22 = 0x50 // AF22
DiffServAF23 = 0x58 // AF23
DiffServAF31 = 0x68 // AF31
DiffServAF32 = 0x70 // AF32
DiffServAF33 = 0x78 // AF33
DiffServAF41 = 0x88 // AF41
DiffServAF42 = 0x90 // AF42
DiffServAF43 = 0x98 // AF43
DiffServEFPHB = 0xb8 // EF PHB
DiffServVOICEADMIT = 0xb0 // VOICE-ADMIT
)
// IPv4 TOS Byte and IPv6 Traffic Class Octet, Updated: 2001-09-06
const (
NotECNTransport = 0x0 // Not-ECT (Not ECN-Capable Transport)
ECNTransport1 = 0x1 // ECT(1) (ECN-Capable Transport(1))
ECNTransport0 = 0x2 // ECT(0) (ECN-Capable Transport(0))
CongestionExperienced = 0x3 // CE (Congestion Experienced)
)

View File

@@ -0,0 +1,46 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "sync"
// An ICMPType represents a type of ICMP message.
type ICMPType int
func (typ ICMPType) String() string {
s, ok := icmpTypes[typ]
if !ok {
return "<nil>"
}
return s
}
// An ICMPFilter represents an ICMP message filter for incoming
// packets.
type ICMPFilter struct {
mu sync.RWMutex
rawICMPFilter
}
// Set sets the ICMP type and filter action to the filter.
func (f *ICMPFilter) Set(typ ICMPType, block bool) {
f.mu.Lock()
defer f.mu.Unlock()
f.set(typ, block)
}
// SetAll sets the filter action to the filter.
func (f *ICMPFilter) SetAll(block bool) {
f.mu.Lock()
defer f.mu.Unlock()
f.setAll(block)
}
// WillBlock reports whether the ICMP type will be blocked.
func (f *ICMPFilter) WillBlock(typ ICMPType) bool {
f.mu.RLock()
defer f.mu.RUnlock()
return f.willBlock(typ)
}

View File

@@ -0,0 +1,35 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd netbsd openbsd
package ipv6
import "syscall"
type rawICMPFilter struct {
syscall.ICMPv6Filter
}
func (f *rawICMPFilter) set(typ ICMPType, block bool) {
if block {
f.Filt[typ>>5] &^= 1 << (uint32(typ) & 31)
} else {
f.Filt[typ>>5] |= 1 << (uint32(typ) & 31)
}
}
func (f *rawICMPFilter) setAll(block bool) {
for i := range f.Filt {
if block {
f.Filt[i] = 0
} else {
f.Filt[i] = 1<<32 - 1
}
}
}
func (f *rawICMPFilter) willBlock(typ ICMPType) bool {
return f.Filt[typ>>5]&(1<<(uint32(typ)&31)) == 0
}

View File

@@ -0,0 +1,33 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
type rawICMPFilter struct {
syscall.ICMPv6Filter
}
func (f *rawICMPFilter) set(typ ICMPType, block bool) {
if block {
f.Data[typ>>5] |= 1 << (uint32(typ) & 31)
} else {
f.Data[typ>>5] &^= 1 << (uint32(typ) & 31)
}
}
func (f *rawICMPFilter) setAll(block bool) {
for i := range f.Data {
if block {
f.Data[i] = 1<<32 - 1
} else {
f.Data[i] = 0
}
}
}
func (f *rawICMPFilter) willBlock(typ ICMPType) bool {
return f.Data[typ>>5]&(1<<(uint32(typ)&31)) != 0
}

View File

@@ -0,0 +1,22 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
type rawICMPFilter struct {
// TODO(mikio): Implement this
}
func (f *rawICMPFilter) set(typ ICMPType, block bool) {
// TODO(mikio): Implement this
}
func (f *rawICMPFilter) setAll(block bool) {
// TODO(mikio): Implement this
}
func (f *rawICMPFilter) willBlock(typ ICMPType) bool {
// TODO(mikio): Implement this
return false
}

View File

@@ -0,0 +1,84 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"net"
"os"
"reflect"
"runtime"
"sync"
"testing"
)
func TestICMPFilter(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
var f ipv6.ICMPFilter
for _, toggle := range []bool{false, true} {
f.SetAll(toggle)
var wg sync.WaitGroup
for _, typ := range []ipv6.ICMPType{
ipv6.ICMPTypeDestinationUnreachable,
ipv6.ICMPTypeEchoReply,
ipv6.ICMPTypeNeighborSolicitation,
ipv6.ICMPTypeDuplicateAddressConfirmation,
} {
wg.Add(1)
go func(typ ipv6.ICMPType) {
defer wg.Done()
f.Set(typ, false)
if f.WillBlock(typ) {
t.Errorf("ipv6.ICMPFilter.Set(%v, false) failed", typ)
}
f.Set(typ, true)
if !f.WillBlock(typ) {
t.Errorf("ipv6.ICMPFilter.Set(%v, true) failed", typ)
}
}(typ)
}
wg.Wait()
}
}
func TestSetICMPFilter(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
if os.Getuid() != 0 {
t.Skip("must be root")
}
c, err := net.ListenPacket("ip6:ipv6-icmp", "::1")
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
var f ipv6.ICMPFilter
f.SetAll(true)
f.Set(ipv6.ICMPTypeEchoRequest, false)
f.Set(ipv6.ICMPTypeEchoReply, false)
if err := p.SetICMPFilter(&f); err != nil {
t.Fatalf("ipv6.PacketConn.SetICMPFilter failed: %v", err)
}
kf, err := p.ICMPFilter()
if err != nil {
t.Fatalf("ipv6.PacketConn.ICMPFilter failed: %v", err)
}
if !reflect.DeepEqual(kf, &f) {
t.Fatalf("got unexpected filter %#v; expected %#v", kf, f)
}
}

View File

@@ -0,0 +1,22 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
type rawICMPFilter struct {
// TODO(mikio): Implement this
}
func (f *rawICMPFilter) set(typ ICMPType, block bool) {
// TODO(mikio): Implement this
}
func (f *rawICMPFilter) setAll(block bool) {
// TODO(mikio): Implement this
}
func (f *rawICMPFilter) willBlock(typ ICMPType) bool {
// TODO(mikio): Implement this
return false
}

View File

@@ -0,0 +1,112 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"errors"
)
// icmpMessage represents an ICMP message.
type icmpMessage struct {
Type ipv6.ICMPType // type
Code int // code
Checksum int // checksum
Body icmpMessageBody // body
}
// icmpMessageBody represents an ICMP message body.
type icmpMessageBody interface {
Len() int
Marshal() ([]byte, error)
}
// Marshal returns the binary enconding of the ICMP echo request or
// reply message m.
func (m *icmpMessage) Marshal() ([]byte, error) {
b := []byte{byte(m.Type), byte(m.Code), 0, 0}
if m.Body != nil && m.Body.Len() != 0 {
mb, err := m.Body.Marshal()
if err != nil {
return nil, err
}
b = append(b, mb...)
}
switch m.Type {
case ipv6.ICMPTypeEchoRequest, ipv6.ICMPTypeEchoReply:
return b, nil
}
csumcv := len(b) - 1 // checksum coverage
s := uint32(0)
for i := 0; i < csumcv; i += 2 {
s += uint32(b[i+1])<<8 | uint32(b[i])
}
if csumcv&1 == 0 {
s += uint32(b[csumcv])
}
s = s>>16 + s&0xffff
s = s + s>>16
// Place checksum back in header; using ^= avoids the
// assumption the checksum bytes are zero.
b[2] ^= byte(^s)
b[3] ^= byte(^s >> 8)
return b, nil
}
// parseICMPMessage parses b as an ICMP message.
func parseICMPMessage(b []byte) (*icmpMessage, error) {
msglen := len(b)
if msglen < 4 {
return nil, errors.New("message too short")
}
m := &icmpMessage{Type: ipv6.ICMPType(b[0]), Code: int(b[1]), Checksum: int(b[2])<<8 | int(b[3])}
if msglen > 4 {
var err error
switch m.Type {
case ipv6.ICMPTypeEchoRequest, ipv6.ICMPTypeEchoReply:
m.Body, err = parseICMPEcho(b[4:])
if err != nil {
return nil, err
}
}
}
return m, nil
}
// imcpEcho represenets an ICMP echo request or reply message body.
type icmpEcho struct {
ID int // identifier
Seq int // sequence number
Data []byte // data
}
func (p *icmpEcho) Len() int {
if p == nil {
return 0
}
return 4 + len(p.Data)
}
// Marshal returns the binary enconding of the ICMP echo request or
// reply message body p.
func (p *icmpEcho) Marshal() ([]byte, error) {
b := make([]byte, 4+len(p.Data))
b[0], b[1] = byte(p.ID>>8), byte(p.ID)
b[2], b[3] = byte(p.Seq>>8), byte(p.Seq)
copy(b[4:], p.Data)
return b, nil
}
// parseICMPEcho parses b as an ICMP echo request or reply message
// body.
func parseICMPEcho(b []byte) (*icmpEcho, error) {
bodylen := len(b)
p := &icmpEcho{ID: int(b[0])<<8 | int(b[1]), Seq: int(b[2])<<8 | int(b[3])}
if bodylen > 4 {
p.Data = make([]byte, bodylen-4)
copy(p.Data, b[4:])
}
return p, nil
}

View File

@@ -0,0 +1,110 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"net"
"testing"
)
func isLinkLocalUnicast(ip net.IP) bool {
return ip.To4() == nil && ip.To16() != nil && ip.IsLinkLocalUnicast()
}
func loopbackInterface() *net.Interface {
ift, err := net.Interfaces()
if err != nil {
return nil
}
for _, ifi := range ift {
if ifi.Flags&net.FlagLoopback == 0 || ifi.Flags&net.FlagUp == 0 {
continue
}
ifat, err := ifi.Addrs()
if err != nil {
continue
}
for _, ifa := range ifat {
switch ifa := ifa.(type) {
case *net.IPAddr:
if isLinkLocalUnicast(ifa.IP) {
return &ifi
}
case *net.IPNet:
if isLinkLocalUnicast(ifa.IP) {
return &ifi
}
}
}
}
return nil
}
func isMulticastAvailable(ifi *net.Interface) (net.IP, bool) {
if ifi == nil || ifi.Flags&net.FlagUp == 0 || ifi.Flags&net.FlagMulticast == 0 {
return nil, false
}
ifat, err := ifi.Addrs()
if err != nil {
return nil, false
}
for _, ifa := range ifat {
switch ifa := ifa.(type) {
case *net.IPAddr:
if isLinkLocalUnicast(ifa.IP) {
return ifa.IP, true
}
case *net.IPNet:
if isLinkLocalUnicast(ifa.IP) {
return ifa.IP, true
}
}
}
return nil, false
}
func connector(t *testing.T, network, addr string, done chan<- bool) {
defer func() { done <- true }()
c, err := net.Dial(network, addr)
if err != nil {
t.Errorf("net.Dial failed: %v", err)
return
}
c.Close()
}
func acceptor(t *testing.T, ln net.Listener, done chan<- bool) {
defer func() { done <- true }()
c, err := ln.Accept()
if err != nil {
t.Errorf("net.Listener.Accept failed: %v", err)
return
}
c.Close()
}
func transponder(t *testing.T, ln net.Listener, done chan<- bool) {
defer func() { done <- true }()
c, err := ln.Accept()
if err != nil {
t.Errorf("net.Listener.Accept failed: %v", err)
return
}
defer c.Close()
b := make([]byte, 128)
n, err := c.Read(b)
if err != nil {
t.Errorf("net.Conn.Read failed: %v", err)
return
}
if _, err := c.Write(b[:n]); err != nil {
t.Errorf("net.Conn.Write failed: %v", err)
return
}
}

View File

@@ -0,0 +1,161 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"net"
"os"
"runtime"
"testing"
)
func TestPacketConnReadWriteMulticastUDP(t *testing.T) {
switch runtime.GOOS {
case "freebsd": // due to a bug on loopback marking
// See http://www.freebsd.org/cgi/query-pr.cgi?pr=180065.
t.Skipf("not supported on %q", runtime.GOOS)
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
ifi := loopbackInterface()
if ifi == nil {
t.Skipf("not available on %q", runtime.GOOS)
}
c, err := net.ListenPacket("udp6", "[ff02::114]:0") // see RFC 4727
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
_, port, err := net.SplitHostPort(c.LocalAddr().String())
if err != nil {
t.Fatalf("net.SplitHostPort failed: %v", err)
}
dst, err := net.ResolveUDPAddr("udp6", "[ff02::114]:"+port) // see RFC 4727
if err != nil {
t.Fatalf("net.ResolveUDPAddr failed: %v", err)
}
p := ipv6.NewPacketConn(c)
if err := p.JoinGroup(ifi, dst); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup on %v failed: %v", ifi, err)
}
if err := p.SetMulticastInterface(ifi); err != nil {
t.Fatalf("ipv6.PacketConn.SetMulticastInterface failed: %v", err)
}
if err := p.SetMulticastLoopback(true); err != nil {
t.Fatalf("ipv6.PacketConn.SetMulticastLoopback failed: %v", err)
}
cm := ipv6.ControlMessage{
TrafficClass: DiffServAF11 | CongestionExperienced,
IfIndex: ifi.Index,
}
cf := ipv6.FlagTrafficClass | ipv6.FlagHopLimit | ipv6.FlagInterface | ipv6.FlagPathMTU
for i, toggle := range []bool{true, false, true} {
if err := p.SetControlMessage(cf, toggle); err != nil {
t.Fatalf("ipv6.PacketConn.SetControlMessage failed: %v", err)
}
cm.HopLimit = i + 1
if _, err := p.WriteTo([]byte("HELLO-R-U-THERE"), &cm, dst); err != nil {
t.Fatalf("ipv6.PacketConn.WriteTo failed: %v", err)
}
b := make([]byte, 128)
if _, cm, _, err := p.ReadFrom(b); err != nil {
t.Fatalf("ipv6.PacketConn.ReadFrom failed: %v", err)
} else {
t.Logf("rcvd cmsg: %v", cm)
}
}
}
func TestPacketConnReadWriteMulticastICMP(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
if os.Getuid() != 0 {
t.Skip("must be root")
}
ifi := loopbackInterface()
if ifi == nil {
t.Skipf("not available on %q", runtime.GOOS)
}
c, err := net.ListenPacket("ip6:ipv6-icmp", "::")
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
dst, err := net.ResolveIPAddr("ip6", "ff02::114") // see RFC 4727
if err != nil {
t.Fatalf("net.ResolveIPAddr failed: %v", err)
}
p := ipv6.NewPacketConn(c)
if err := p.JoinGroup(ifi, dst); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup on %v failed: %v", ifi, err)
}
if err := p.SetMulticastInterface(ifi); err != nil {
t.Fatalf("ipv6.PacketConn.SetMulticastInterface failed: %v", err)
}
if err := p.SetMulticastLoopback(true); err != nil {
t.Fatalf("ipv6.PacketConn.SetMulticastLoopback failed: %v", err)
}
cm := ipv6.ControlMessage{
TrafficClass: DiffServAF11 | CongestionExperienced,
IfIndex: ifi.Index,
}
cf := ipv6.FlagTrafficClass | ipv6.FlagHopLimit | ipv6.FlagInterface | ipv6.FlagPathMTU
var f ipv6.ICMPFilter
f.SetAll(true)
f.Set(ipv6.ICMPTypeEchoReply, false)
if err := p.SetICMPFilter(&f); err != nil {
t.Fatalf("ipv6.PacketConn.SetICMPFilter failed: %v", err)
}
for i, toggle := range []bool{true, false, true} {
wb, err := (&icmpMessage{
Type: ipv6.ICMPTypeEchoRequest, Code: 0,
Body: &icmpEcho{
ID: os.Getpid() & 0xffff, Seq: i + 1,
Data: []byte("HELLO-R-U-THERE"),
},
}).Marshal()
if err != nil {
t.Fatalf("icmpMessage.Marshal failed: %v", err)
}
if err := p.SetControlMessage(cf, toggle); err != nil {
t.Fatalf("ipv6.PacketConn.SetControlMessage failed: %v", err)
}
cm.HopLimit = i + 1
if _, err := p.WriteTo(wb, &cm, dst); err != nil {
t.Fatalf("ipv6.PacketConn.WriteTo failed: %v", err)
}
b := make([]byte, 128)
if n, cm, _, err := p.ReadFrom(b); err != nil {
t.Fatalf("ipv6.PacketConn.ReadFrom failed: %v", err)
} else {
t.Logf("rcvd cmsg: %v", cm)
if m, err := parseICMPMessage(b[:n]); err != nil {
t.Fatalf("parseICMPMessage failed: %v", err)
} else if m.Type != ipv6.ICMPTypeEchoReply || m.Code != 0 {
t.Fatalf("got type=%v, code=%v; expected type=%v, code=%v", m.Type, m.Code, ipv6.ICMPTypeEchoReply, 0)
}
}
}
}

View File

@@ -0,0 +1,197 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"fmt"
"net"
"os"
"runtime"
"testing"
)
var udpMultipleGroupListenerTests = []net.Addr{
&net.UDPAddr{IP: net.ParseIP("ff02::114")}, // see RFC 4727
&net.UDPAddr{IP: net.ParseIP("ff02::1:114")},
&net.UDPAddr{IP: net.ParseIP("ff02::2:114")},
}
func TestUDPSinglePacketConnWithMultipleGroupListeners(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
for _, gaddr := range udpMultipleGroupListenerTests {
c, err := net.ListenPacket("udp6", "[::]:0") // wildcard address with non-reusable port
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
var mift []*net.Interface
ift, err := net.Interfaces()
if err != nil {
t.Fatalf("net.Interfaces failed: %v", err)
}
for i, ifi := range ift {
if _, ok := isMulticastAvailable(&ifi); !ok {
continue
}
if err := p.JoinGroup(&ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup %v on %v failed: %v", gaddr, ifi, err)
}
mift = append(mift, &ift[i])
}
for _, ifi := range mift {
if err := p.LeaveGroup(ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.LeaveGroup %v on %v failed: %v", gaddr, ifi, err)
}
}
}
}
func TestUDPMultipleConnWithMultipleGroupListeners(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
for _, gaddr := range udpMultipleGroupListenerTests {
c1, err := net.ListenPacket("udp6", "[ff02::]:1024") // wildcard address with reusable port
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c1.Close()
c2, err := net.ListenPacket("udp6", "[ff02::]:1024") // wildcard address with reusable port
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c2.Close()
var ps [2]*ipv6.PacketConn
ps[0] = ipv6.NewPacketConn(c1)
ps[1] = ipv6.NewPacketConn(c2)
var mift []*net.Interface
ift, err := net.Interfaces()
if err != nil {
t.Fatalf("net.Interfaces failed: %v", err)
}
for i, ifi := range ift {
if _, ok := isMulticastAvailable(&ifi); !ok {
continue
}
for _, p := range ps {
if err := p.JoinGroup(&ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup %v on %v failed: %v", gaddr, ifi, err)
}
}
mift = append(mift, &ift[i])
}
for _, ifi := range mift {
for _, p := range ps {
if err := p.LeaveGroup(ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.LeaveGroup %v on %v failed: %v", gaddr, ifi, err)
}
}
}
}
}
func TestUDPPerInterfaceSinglePacketConnWithSingleGroupListener(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
gaddr := &net.IPAddr{IP: net.ParseIP("ff02::114")} // see RFC 4727
type ml struct {
c *ipv6.PacketConn
ifi *net.Interface
}
var mlt []*ml
ift, err := net.Interfaces()
if err != nil {
t.Fatalf("net.Interfaces failed: %v", err)
}
for i, ifi := range ift {
ip, ok := isMulticastAvailable(&ifi)
if !ok {
continue
}
c, err := net.ListenPacket("udp6", fmt.Sprintf("[%s%%%s]:1024", ip.String(), ifi.Name)) // unicast address with non-reusable port
if err != nil {
t.Fatalf("net.ListenPacket with %v failed: %v", ip, err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
if err := p.JoinGroup(&ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup on %v failed: %v", ifi, err)
}
mlt = append(mlt, &ml{p, &ift[i]})
}
for _, m := range mlt {
if err := m.c.LeaveGroup(m.ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.LeaveGroup on %v failed: %v", m.ifi, err)
}
}
}
func TestIPSinglePacketConnWithSingleGroupListener(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
if os.Getuid() != 0 {
t.Skip("must be root")
}
c, err := net.ListenPacket("ip6:ipv6-icmp", "::")
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
gaddr := &net.IPAddr{IP: net.ParseIP("ff02::114")} // see RFC 4727
var mift []*net.Interface
ift, err := net.Interfaces()
if err != nil {
t.Fatalf("net.Interfaces failed: %v", err)
}
for i, ifi := range ift {
if _, ok := isMulticastAvailable(&ifi); !ok {
continue
}
if err := p.JoinGroup(&ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup on %v failed: %v", ifi, err)
}
mift = append(mift, &ift[i])
}
for _, ifi := range mift {
if err := p.LeaveGroup(ifi, gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.LeaveGroup on %v failed: %v", ifi, err)
}
}
}

View File

@@ -0,0 +1,76 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"net"
"os"
"runtime"
"testing"
)
var packetConnMulticastSocketOptionTests = []struct {
net, proto, addr string
gaddr net.Addr
}{
{"udp6", "", "[ff02::]:0", &net.UDPAddr{IP: net.ParseIP("ff02::114")}}, // see RFC 4727
{"ip6", ":ipv6-icmp", "::", &net.IPAddr{IP: net.ParseIP("ff02::114")}}, // see RFC 4727
}
func TestPacketConnMulticastSocketOptions(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
ifi := loopbackInterface()
if ifi == nil {
t.Skipf("not available on %q", runtime.GOOS)
}
for _, tt := range packetConnMulticastSocketOptionTests {
if tt.net == "ip6" && os.Getuid() != 0 {
t.Skip("must be root")
}
c, err := net.ListenPacket(tt.net+tt.proto, tt.addr)
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
hoplim := 255
if err := p.SetMulticastHopLimit(hoplim); err != nil {
t.Fatalf("ipv6.PacketConn.SetMulticastHopLimit failed: %v", err)
}
if v, err := p.MulticastHopLimit(); err != nil {
t.Fatalf("ipv6.PacketConn.MulticastHopLimit failed: %v", err)
} else if v != hoplim {
t.Fatalf("got unexpected multicast hop limit %v; expected %v", v, hoplim)
}
for _, toggle := range []bool{true, false} {
if err := p.SetMulticastLoopback(toggle); err != nil {
t.Fatalf("ipv6.PacketConn.SetMulticastLoopback failed: %v", err)
}
if v, err := p.MulticastLoopback(); err != nil {
t.Fatalf("ipv6.PacketConn.MulticastLoopback failed: %v", err)
} else if v != toggle {
t.Fatalf("got unexpected multicast loopback %v; expected %v", v, toggle)
}
}
if err := p.JoinGroup(ifi, tt.gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.JoinGroup(%v, %v) failed: %v", ifi, tt.gaddr, err)
}
if err := p.LeaveGroup(ifi, tt.gaddr); err != nil {
t.Fatalf("ipv6.PacketConn.LeaveGroup(%v, %v) failed: %v", ifi, tt.gaddr, err)
}
}
}

View File

@@ -0,0 +1,15 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "net"
// A payloadHandler represents the IPv6 datagram payload handler.
type payloadHandler struct {
net.PacketConn
rawOpt
}
func (c *payloadHandler) ok() bool { return c != nil && c.PacketConn != nil }

View File

@@ -0,0 +1,70 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !plan9,!windows
package ipv6
import (
"net"
"syscall"
)
// ReadFrom reads a payload of the received IPv6 datagram, from the
// endpoint c, copying the payload into b. It returns the number of
// bytes copied into b, the control message cm and the source address
// src of the received datagram.
func (c *payloadHandler) ReadFrom(b []byte) (n int, cm *ControlMessage, src net.Addr, err error) {
if !c.ok() {
return 0, nil, nil, syscall.EINVAL
}
oob := newControlMessage(&c.rawOpt)
var oobn int
switch c := c.PacketConn.(type) {
case *net.UDPConn:
if n, oobn, _, src, err = c.ReadMsgUDP(b, oob); err != nil {
return 0, nil, nil, err
}
case *net.IPConn:
if n, oobn, _, src, err = c.ReadMsgIP(b, oob); err != nil {
return 0, nil, nil, err
}
default:
return 0, nil, nil, errInvalidConnType
}
if cm, err = parseControlMessage(oob[:oobn]); err != nil {
return 0, nil, nil, err
}
if cm != nil {
cm.Src = netAddrToIP16(src)
}
return
}
// WriteTo writes a payload of the IPv6 datagram, to the destination
// address dst through the endpoint c, copying the payload from b. It
// returns the number of bytes written. The control message cm allows
// the IPv6 header fields and the datagram path to be specified. The
// cm may be nil if control of the outgoing datagram is not required.
func (c *payloadHandler) WriteTo(b []byte, cm *ControlMessage, dst net.Addr) (n int, err error) {
if !c.ok() {
return 0, syscall.EINVAL
}
oob := marshalControlMessage(cm)
if dst == nil {
return 0, errMissingAddress
}
switch c := c.PacketConn.(type) {
case *net.UDPConn:
n, _, err = c.WriteMsgUDP(b, oob, dst.(*net.UDPAddr))
case *net.IPConn:
n, _, err = c.WriteMsgIP(b, oob, dst.(*net.IPAddr))
default:
return 0, errInvalidConnType
}
if err != nil {
return 0, err
}
return
}

View File

@@ -0,0 +1,41 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build plan9 windows
package ipv6
import (
"net"
"syscall"
)
// ReadFrom reads a payload of the received IPv6 datagram, from the
// endpoint c, copying the payload into b. It returns the number of
// bytes copied into b, the control message cm and the source address
// src of the received datagram.
func (c *payloadHandler) ReadFrom(b []byte) (n int, cm *ControlMessage, src net.Addr, err error) {
if !c.ok() {
return 0, nil, nil, syscall.EINVAL
}
if n, src, err = c.PacketConn.ReadFrom(b); err != nil {
return 0, nil, nil, err
}
return
}
// WriteTo writes a payload of the IPv6 datagram, to the destination
// address dst through the endpoint c, copying the payload from b. It
// returns the number of bytes written. The control message cm allows
// the IPv6 header fields and the datagram path to be specified. The
// cm may be nil if control of the outgoing datagram is not required.
func (c *payloadHandler) WriteTo(b []byte, cm *ControlMessage, dst net.Addr) (n int, err error) {
if !c.ok() {
return 0, syscall.EINVAL
}
if dst == nil {
return 0, errMissingAddress
}
return c.PacketConn.WriteTo(b, dst)
}

View File

@@ -0,0 +1,66 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"os"
"syscall"
)
func ipv6ReceiveTrafficClass(fd int) (bool, error) {
return false, errNotSupported
}
func setIPv6ReceiveTrafficClass(fd int, v bool) error {
return errNotSupported
}
func ipv6ReceiveHopLimit(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_2292HOPLIMIT)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceiveHopLimit(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_2292HOPLIMIT, boolint(v)))
}
func ipv6ReceivePacketInfo(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_2292PKTINFO)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceivePacketInfo(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_2292PKTINFO, boolint(v)))
}
func ipv6PathMTU(fd int) (int, error) {
return 0, errNotSupported
}
func ipv6ReceivePathMTU(fd int) (bool, error) {
return false, errNotSupported
}
func setIPv6ReceivePathMTU(fd int, v bool) error {
return errNotSupported
}
func ipv6ICMPFilter(fd int) (*ICMPFilter, error) {
v, err := syscall.GetsockoptICMPv6Filter(fd, ianaProtocolIPv6ICMP, syscall.ICMP6_FILTER)
if err != nil {
return nil, os.NewSyscallError("getsockopt", err)
}
return &ICMPFilter{rawICMPFilter: rawICMPFilter{*v}}, nil
}
func setIPv6ICMPFilter(fd int, f *ICMPFilter) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptICMPv6Filter(fd, ianaProtocolIPv6ICMP, syscall.ICMP6_FILTER, &f.rawICMPFilter.ICMPv6Filter))
}

View File

@@ -0,0 +1,19 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd netbsd openbsd
package ipv6
import (
"os"
"syscall"
)
func setIPv6Checksum(fd int, on bool, offset int) error {
if !on {
offset = -1
}
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_CHECKSUM, offset))
}

View File

@@ -0,0 +1,17 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"os"
"syscall"
)
func setIPv6Checksum(fd int, on bool, offset int) error {
if !on {
offset = -1
}
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolReserved, syscall.IPV6_CHECKSUM, offset))
}

View File

@@ -0,0 +1,114 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin freebsd linux netbsd openbsd
package ipv6
import (
"net"
"os"
"syscall"
)
func ipv6TrafficClass(fd int) (int, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_TCLASS)
if err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return v, nil
}
func setIPv6TrafficClass(fd, v int) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_TCLASS, v))
}
func ipv6HopLimit(fd int) (int, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_UNICAST_HOPS)
if err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return v, nil
}
func setIPv6HopLimit(fd, v int) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_UNICAST_HOPS, v))
}
func ipv6Checksum(fd int) (bool, int, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_CHECKSUM)
if err != nil {
return false, 0, os.NewSyscallError("getsockopt", err)
}
on := true
if v == -1 {
on = false
}
return on, v, nil
}
func ipv6MulticastHopLimit(fd int) (int, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_HOPS)
if err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return v, nil
}
func setIPv6MulticastHopLimit(fd, v int) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_HOPS, v))
}
func ipv6MulticastInterface(fd int) (*net.Interface, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_IF)
if err != nil {
return nil, os.NewSyscallError("getsockopt", err)
}
if v == 0 {
return nil, nil
}
ifi, err := net.InterfaceByIndex(v)
if err != nil {
return nil, err
}
return ifi, nil
}
func setIPv6MulticastInterface(fd int, ifi *net.Interface) error {
var v int
if ifi != nil {
v = ifi.Index
}
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_IF, v))
}
func ipv6MulticastLoopback(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_LOOP)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6MulticastLoopback(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_LOOP, boolint(v)))
}
func joinIPv6Group(fd int, ifi *net.Interface, grp net.IP) error {
mreq := syscall.IPv6Mreq{}
copy(mreq.Multiaddr[:], grp)
if ifi != nil {
mreq.Interface = uint32(ifi.Index)
}
return os.NewSyscallError("setsockopt", syscall.SetsockoptIPv6Mreq(fd, ianaProtocolIPv6, syscall.IPV6_JOIN_GROUP, &mreq))
}
func leaveIPv6Group(fd int, ifi *net.Interface, grp net.IP) error {
mreq := syscall.IPv6Mreq{}
copy(mreq.Multiaddr[:], grp)
if ifi != nil {
mreq.Interface = uint32(ifi.Index)
}
return os.NewSyscallError("setsockopt", syscall.SetsockoptIPv6Mreq(fd, ianaProtocolIPv6, syscall.IPV6_LEAVE_GROUP, &mreq))
}

View File

@@ -0,0 +1,116 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"net"
"os"
"syscall"
"unsafe"
)
func ipv6TrafficClass(fd syscall.Handle) (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EWINDOWS
}
func setIPv6TrafficClass(fd syscall.Handle, v int) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}
func ipv6HopLimit(fd syscall.Handle) (int, error) {
var v int32
l := int32(4)
if err := syscall.Getsockopt(fd, ianaProtocolIPv6, syscall.IPV6_UNICAST_HOPS, (*byte)(unsafe.Pointer(&v)), &l); err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return int(v), nil
}
func setIPv6HopLimit(fd syscall.Handle, v int) error {
vv := int32(v)
return os.NewSyscallError("setsockopt", syscall.Setsockopt(fd, ianaProtocolIPv6, syscall.IPV6_UNICAST_HOPS, (*byte)(unsafe.Pointer(&vv)), 4))
}
func ipv6Checksum(fd syscall.Handle) (bool, int, error) {
// TODO(mikio): Implement this
return false, 0, syscall.EWINDOWS
}
func ipv6MulticastHopLimit(fd syscall.Handle) (int, error) {
var v int32
l := int32(4)
if err := syscall.Getsockopt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_HOPS, (*byte)(unsafe.Pointer(&v)), &l); err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return int(v), nil
}
func setIPv6MulticastHopLimit(fd syscall.Handle, v int) error {
vv := int32(v)
return os.NewSyscallError("setsockopt", syscall.Setsockopt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_HOPS, (*byte)(unsafe.Pointer(&vv)), 4))
}
func ipv6MulticastInterface(fd syscall.Handle) (*net.Interface, error) {
var v int32
l := int32(4)
if err := syscall.Getsockopt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_IF, (*byte)(unsafe.Pointer(&v)), &l); err != nil {
return nil, os.NewSyscallError("getsockopt", err)
}
if v == 0 {
return nil, nil
}
ifi, err := net.InterfaceByIndex(int(v))
if err != nil {
return nil, err
}
return ifi, nil
}
func setIPv6MulticastInterface(fd syscall.Handle, ifi *net.Interface) error {
var v int32
if ifi != nil {
v = int32(ifi.Index)
}
return os.NewSyscallError("setsockopt", syscall.Setsockopt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_IF, (*byte)(unsafe.Pointer(&v)), 4))
}
func ipv6MulticastLoopback(fd syscall.Handle) (bool, error) {
var v int32
l := int32(4)
if err := syscall.Getsockopt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_LOOP, (*byte)(unsafe.Pointer(&v)), &l); err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6MulticastLoopback(fd syscall.Handle, v bool) error {
vv := int32(boolint(v))
return os.NewSyscallError("setsockopt", syscall.Setsockopt(fd, ianaProtocolIPv6, syscall.IPV6_MULTICAST_LOOP, (*byte)(unsafe.Pointer(&vv)), 4))
}
func joinIPv6Group(fd syscall.Handle, ifi *net.Interface, grp net.IP) error {
mreq := syscall.IPv6Mreq{}
copy(mreq.Multiaddr[:], grp)
if ifi != nil {
mreq.Interface = uint32(ifi.Index)
}
return os.NewSyscallError("setsockopt", syscall.Setsockopt(fd, ianaProtocolIPv6, syscall.IPV6_JOIN_GROUP, (*byte)(unsafe.Pointer(&mreq)), int32(unsafe.Sizeof(mreq))))
}
func leaveIPv6Group(fd syscall.Handle, ifi *net.Interface, grp net.IP) error {
mreq := syscall.IPv6Mreq{}
copy(mreq.Multiaddr[:], grp)
if ifi != nil {
mreq.Interface = uint32(ifi.Index)
}
return os.NewSyscallError("setsockopt", syscall.Setsockopt(fd, ianaProtocolIPv6, syscall.IPV6_LEAVE_GROUP, (*byte)(unsafe.Pointer(&mreq)), int32(unsafe.Sizeof(mreq))))
}
func setIPv6Checksum(fd syscall.Handle, on bool, offset int) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}

View File

@@ -0,0 +1,44 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build freebsd netbsd openbsd
package ipv6
import (
"os"
"syscall"
)
func ipv6PathMTU(fd int) (int, error) {
v, err := syscall.GetsockoptIPv6MTUInfo(fd, ianaProtocolIPv6, syscall.IPV6_PATHMTU)
if err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return int(v.Mtu), nil
}
func ipv6ReceivePathMTU(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVPATHMTU)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceivePathMTU(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVPATHMTU, boolint(v)))
}
func ipv6ICMPFilter(fd int) (*ICMPFilter, error) {
v, err := syscall.GetsockoptICMPv6Filter(fd, ianaProtocolIPv6ICMP, syscall.ICMP6_FILTER)
if err != nil {
return nil, os.NewSyscallError("getsockopt", err)
}
return &ICMPFilter{rawICMPFilter: rawICMPFilter{*v}}, nil
}
func setIPv6ICMPFilter(fd int, f *ICMPFilter) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptICMPv6Filter(fd, ianaProtocolIPv6ICMP, syscall.ICMP6_FILTER, &f.rawICMPFilter.ICMPv6Filter))
}

View File

@@ -0,0 +1,42 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import (
"os"
"syscall"
)
func ipv6PathMTU(fd int) (int, error) {
v, err := syscall.GetsockoptIPv6MTUInfo(fd, ianaProtocolIPv6, syscall_IPV6_PATHMTU)
if err != nil {
return 0, os.NewSyscallError("getsockopt", err)
}
return int(v.Mtu), nil
}
func ipv6ReceivePathMTU(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall_IPV6_RECVPATHMTU)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceivePathMTU(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall_IPV6_RECVPATHMTU, boolint(v)))
}
func ipv6ICMPFilter(fd int) (*ICMPFilter, error) {
v, err := syscall.GetsockoptICMPv6Filter(fd, ianaProtocolIPv6ICMP, syscall.ICMPV6_FILTER)
if err != nil {
return nil, os.NewSyscallError("getsockopt", err)
}
return &ICMPFilter{rawICMPFilter: rawICMPFilter{*v}}, nil
}
func setIPv6ICMPFilter(fd int, f *ICMPFilter) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptICMPv6Filter(fd, ianaProtocolIPv6ICMP, syscall.ICMPV6_FILTER, &f.rawICMPFilter.ICMPv6Filter))
}

View File

@@ -0,0 +1,12 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
func ipv6PathMTU(fd int) (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EPLAN9
}

View File

@@ -0,0 +1,48 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build freebsd linux netbsd openbsd
package ipv6
import (
"os"
"syscall"
)
func ipv6ReceiveTrafficClass(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVTCLASS)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceiveTrafficClass(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVTCLASS, boolint(v)))
}
func ipv6ReceiveHopLimit(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVHOPLIMIT)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceiveHopLimit(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVHOPLIMIT, boolint(v)))
}
func ipv6ReceivePacketInfo(fd int) (bool, error) {
v, err := syscall.GetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVPKTINFO)
if err != nil {
return false, os.NewSyscallError("getsockopt", err)
}
return v == 1, nil
}
func setIPv6ReceivePacketInfo(fd int, v bool) error {
return os.NewSyscallError("setsockopt", syscall.SetsockoptInt(fd, ianaProtocolIPv6, syscall.IPV6_RECVPKTINFO, boolint(v)))
}

View File

@@ -0,0 +1,62 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6
import "syscall"
func ipv6ReceiveTrafficClass(fd syscall.Handle) (bool, error) {
// TODO(mikio): Implement this
return false, syscall.EWINDOWS
}
func setIPv6ReceiveTrafficClass(fd syscall.Handle, v bool) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}
func ipv6ReceiveHopLimit(fd syscall.Handle) (bool, error) {
// TODO(mikio): Implement this
return false, syscall.EWINDOWS
}
func setIPv6ReceiveHopLimit(fd syscall.Handle, v bool) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}
func ipv6ReceivePacketInfo(fd syscall.Handle) (bool, error) {
// TODO(mikio): Implement this
return false, syscall.EWINDOWS
}
func setIPv6ReceivePacketInfo(fd syscall.Handle, v bool) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}
func ipv6PathMTU(fd syscall.Handle) (int, error) {
// TODO(mikio): Implement this
return 0, syscall.EWINDOWS
}
func ipv6ReceivePathMTU(fd syscall.Handle) (bool, error) {
// TODO(mikio): Implement this
return false, syscall.EWINDOWS
}
func setIPv6ReceivePathMTU(fd syscall.Handle, v bool) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}
func ipv6ICMPFilter(fd syscall.Handle) (*ICMPFilter, error) {
// TODO(mikio): Implement this
return nil, syscall.EWINDOWS
}
func setIPv6ICMPFilter(fd syscall.Handle, f *ICMPFilter) error {
// TODO(mikio): Implement this
return syscall.EWINDOWS
}

View File

@@ -0,0 +1,136 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"net"
"os"
"runtime"
"testing"
)
var supportsIPv6 bool
func init() {
if ln, err := net.Listen("tcp6", "[::1]:0"); err == nil {
ln.Close()
supportsIPv6 = true
}
}
var condFatalf = func() func(*testing.T, string, ...interface{}) {
// A few APIs are not implemented yet on some platforms.
switch runtime.GOOS {
case "darwin", "plan9", "windows":
return (*testing.T).Logf
}
return (*testing.T).Fatalf
}()
func TestConnInitiatorPathMTU(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
ln, err := net.Listen("tcp6", "[::1]:0")
if err != nil {
t.Fatalf("net.Listen failed: %v", err)
}
defer ln.Close()
done := make(chan bool)
go acceptor(t, ln, done)
c, err := net.Dial("tcp6", ln.Addr().String())
if err != nil {
t.Fatalf("net.Dial failed: %v", err)
}
defer c.Close()
if pmtu, err := ipv6.NewConn(c).PathMTU(); err != nil {
condFatalf(t, "ipv6.Conn.PathMTU failed: %v", err)
} else {
t.Logf("path mtu for %v: %v", c.RemoteAddr(), pmtu)
}
<-done
}
func TestConnResponderPathMTU(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
ln, err := net.Listen("tcp6", "[::1]:0")
if err != nil {
t.Fatalf("net.Listen failed: %v", err)
}
defer ln.Close()
done := make(chan bool)
go connector(t, "tcp6", ln.Addr().String(), done)
c, err := ln.Accept()
if err != nil {
t.Fatalf("net.Accept failed: %v", err)
}
defer c.Close()
if pmtu, err := ipv6.NewConn(c).PathMTU(); err != nil {
condFatalf(t, "ipv6.Conn.PathMTU failed: %v", err)
} else {
t.Logf("path mtu for %v: %v", c.RemoteAddr(), pmtu)
}
<-done
}
func TestPacketConnChecksum(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
if os.Getuid() != 0 {
t.Skip("must be root")
}
c, err := net.ListenPacket("ip6:89", "::") // OSPF for IPv6
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
offset := 12 // see RFC 5340
for _, toggle := range []bool{false, true} {
if err := p.SetChecksum(toggle, offset); err != nil {
if toggle {
t.Fatalf("ipv6.PacketConn.SetChecksum(%v, %v) failed: %v", toggle, offset, err)
} else {
// Some platforms never allow to disable the kernel
// checksum processing.
t.Logf("ipv6.PacketConn.SetChecksum(%v, %v) failed: %v", toggle, offset, err)
}
}
if on, offset, err := p.Checksum(); err != nil {
t.Fatalf("ipv6.PacketConn.Checksum failed: %v", err)
} else {
t.Logf("kernel checksum processing enabled=%v, offset=%v", on, offset)
}
}
}

View File

@@ -0,0 +1,203 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"net"
"os"
"runtime"
"testing"
)
func benchmarkUDPListener() (net.PacketConn, net.Addr, error) {
c, err := net.ListenPacket("udp6", "[::1]:0")
if err != nil {
return nil, nil, err
}
dst, err := net.ResolveUDPAddr("udp6", c.LocalAddr().String())
if err != nil {
c.Close()
return nil, nil, err
}
return c, dst, nil
}
func BenchmarkReadWriteNetUDP(b *testing.B) {
c, dst, err := benchmarkUDPListener()
if err != nil {
b.Fatalf("benchmarkUDPListener failed: %v", err)
}
defer c.Close()
wb, rb := []byte("HELLO-R-U-THERE"), make([]byte, 128)
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchmarkReadWriteNetUDP(b, c, wb, rb, dst)
}
}
func benchmarkReadWriteNetUDP(b *testing.B, c net.PacketConn, wb, rb []byte, dst net.Addr) {
if _, err := c.WriteTo(wb, dst); err != nil {
b.Fatalf("net.PacketConn.WriteTo failed: %v", err)
}
if _, _, err := c.ReadFrom(rb); err != nil {
b.Fatalf("net.PacketConn.ReadFrom failed: %v", err)
}
}
func BenchmarkReadWriteIPv6UDP(b *testing.B) {
c, dst, err := benchmarkUDPListener()
if err != nil {
b.Fatalf("benchmarkUDPListener failed: %v", err)
}
defer c.Close()
p := ipv6.NewPacketConn(c)
cf := ipv6.FlagTrafficClass | ipv6.FlagHopLimit | ipv6.FlagInterface | ipv6.FlagPathMTU
if err := p.SetControlMessage(cf, true); err != nil {
b.Fatalf("ipv6.PacketConn.SetControlMessage failed: %v", err)
}
ifi := loopbackInterface()
wb, rb := []byte("HELLO-R-U-THERE"), make([]byte, 128)
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchmarkReadWriteIPv6UDP(b, p, wb, rb, dst, ifi)
}
}
func benchmarkReadWriteIPv6UDP(b *testing.B, p *ipv6.PacketConn, wb, rb []byte, dst net.Addr, ifi *net.Interface) {
cm := ipv6.ControlMessage{
TrafficClass: DiffServAF11 | CongestionExperienced,
HopLimit: 1,
}
if ifi != nil {
cm.IfIndex = ifi.Index
}
if _, err := p.WriteTo(wb, &cm, dst); err != nil {
b.Fatalf("ipv6.PacketConn.WriteTo failed: %v", err)
}
if _, _, _, err := p.ReadFrom(rb); err != nil {
b.Fatalf("ipv6.PacketConn.ReadFrom failed: %v", err)
}
}
func TestPacketConnReadWriteUnicastUDP(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
c, err := net.ListenPacket("udp6", "[::1]:0")
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
dst, err := net.ResolveUDPAddr("udp6", c.LocalAddr().String())
if err != nil {
t.Fatalf("net.ResolveUDPAddr failed: %v", err)
}
p := ipv6.NewPacketConn(c)
cm := ipv6.ControlMessage{
TrafficClass: DiffServAF11 | CongestionExperienced,
}
cf := ipv6.FlagTrafficClass | ipv6.FlagHopLimit | ipv6.FlagInterface | ipv6.FlagPathMTU
ifi := loopbackInterface()
if ifi != nil {
cm.IfIndex = ifi.Index
}
for i, toggle := range []bool{true, false, true} {
if err := p.SetControlMessage(cf, toggle); err != nil {
t.Fatalf("ipv6.PacketConn.SetControlMessage failed: %v", err)
}
cm.HopLimit = i + 1
if _, err := p.WriteTo([]byte("HELLO-R-U-THERE"), &cm, dst); err != nil {
t.Fatalf("ipv6.PacketConn.WriteTo failed: %v", err)
}
b := make([]byte, 128)
if _, cm, _, err := p.ReadFrom(b); err != nil {
t.Fatalf("ipv6.PacketConn.ReadFrom failed: %v", err)
} else {
t.Logf("rcvd cmsg: %v", cm)
}
}
}
func TestPacketConnReadWriteUnicastICMP(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
if os.Getuid() != 0 {
t.Skip("must be root")
}
c, err := net.ListenPacket("ip6:ipv6-icmp", "::1")
if err != nil {
t.Fatalf("net.ListenPacket failed: %v", err)
}
defer c.Close()
dst, err := net.ResolveIPAddr("ip6", "::1")
if err != nil {
t.Fatalf("net.ResolveIPAddr failed: %v", err)
}
p := ipv6.NewPacketConn(c)
cm := ipv6.ControlMessage{TrafficClass: DiffServAF11 | CongestionExperienced}
cf := ipv6.FlagTrafficClass | ipv6.FlagHopLimit | ipv6.FlagInterface | ipv6.FlagPathMTU
ifi := loopbackInterface()
if ifi != nil {
cm.IfIndex = ifi.Index
}
var f ipv6.ICMPFilter
f.SetAll(true)
f.Set(ipv6.ICMPTypeEchoReply, false)
if err := p.SetICMPFilter(&f); err != nil {
t.Fatalf("ipv6.PacketConn.SetICMPFilter failed: %v", err)
}
for i, toggle := range []bool{true, false, true} {
wb, err := (&icmpMessage{
Type: ipv6.ICMPTypeEchoRequest, Code: 0,
Body: &icmpEcho{
ID: os.Getpid() & 0xffff, Seq: i + 1,
Data: []byte("HELLO-R-U-THERE"),
},
}).Marshal()
if err != nil {
t.Fatalf("icmpMessage.Marshal failed: %v", err)
}
if err := p.SetControlMessage(cf, toggle); err != nil {
t.Fatalf("ipv6.PacketConn.SetControlMessage failed: %v", err)
}
cm.HopLimit = i + 1
if _, err := p.WriteTo(wb, &cm, dst); err != nil {
t.Fatalf("ipv6.PacketConn.WriteTo failed: %v", err)
}
b := make([]byte, 128)
if n, cm, _, err := p.ReadFrom(b); err != nil {
t.Fatalf("ipv6.PacketConn.ReadFrom failed: %v", err)
} else {
t.Logf("rcvd cmsg: %v", cm)
if m, err := parseICMPMessage(b[:n]); err != nil {
t.Fatalf("parseICMPMessage failed: %v", err)
} else if m.Type != ipv6.ICMPTypeEchoReply || m.Code != 0 {
t.Fatalf("got type=%v, code=%v; expected type=%v, code=%v", m.Type, m.Code, ipv6.ICMPTypeEchoReply, 0)
}
}
}
}

View File

@@ -0,0 +1,101 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ipv6_test
import (
"code.google.com/p/go.net/ipv6"
"net"
"os"
"runtime"
"testing"
)
func TestConnUnicastSocketOptions(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
ln, err := net.Listen("tcp6", "[::1]:0")
if err != nil {
t.Fatalf("net.Listen failed: %v", err)
}
defer ln.Close()
done := make(chan bool)
go acceptor(t, ln, done)
c, err := net.Dial("tcp6", ln.Addr().String())
if err != nil {
t.Fatalf("net.Dial failed: %v", err)
}
defer c.Close()
testUnicastSocketOptions(t, ipv6.NewConn(c))
<-done
}
var packetConnUnicastSocketOptionTests = []struct {
net, proto, addr string
}{
{"udp6", "", "[::1]:0"},
{"ip6", ":ipv6-icmp", "::1"},
}
func TestPacketConnUnicastSocketOptions(t *testing.T) {
switch runtime.GOOS {
case "plan9", "windows":
t.Skipf("not supported on %q", runtime.GOOS)
}
if !supportsIPv6 {
t.Skip("ipv6 is not supported")
}
for _, tt := range packetConnUnicastSocketOptionTests {
if tt.net == "ip6" && os.Getuid() != 0 {
t.Skip("must be root")
}
c, err := net.ListenPacket(tt.net+tt.proto, tt.addr)
if err != nil {
t.Fatalf("net.ListenPacket(%q, %q) failed: %v", tt.net+tt.proto, tt.addr, err)
}
defer c.Close()
testUnicastSocketOptions(t, ipv6.NewPacketConn(c))
}
}
type testIPv6UnicastConn interface {
TrafficClass() (int, error)
SetTrafficClass(int) error
HopLimit() (int, error)
SetHopLimit(int) error
}
func testUnicastSocketOptions(t *testing.T, c testIPv6UnicastConn) {
tclass := DiffServCS0 | NotECNTransport
if err := c.SetTrafficClass(tclass); err != nil {
t.Fatalf("ipv6.Conn.SetTrafficClass failed: %v", err)
}
if v, err := c.TrafficClass(); err != nil {
t.Fatalf("ipv6.Conn.TrafficClass failed: %v", err)
} else if v != tclass {
t.Fatalf("got unexpected traffic class %v; expected %v", v, tclass)
}
hoplim := 255
if err := c.SetHopLimit(hoplim); err != nil {
t.Fatalf("ipv6.Conn.SetHopLimit failed: %v", err)
}
if v, err := c.HopLimit(); err != nil {
t.Fatalf("ipv6.Conn.HopLimit failed: %v", err)
} else if v != hoplim {
t.Fatalf("got unexpected hop limit %v; expected %v", v, hoplim)
}
}

View File

@@ -0,0 +1,37 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform_test
import (
"fmt"
"unicode"
"code.google.com/p/go.text/transform"
"code.google.com/p/go.text/unicode/norm"
)
func ExampleRemoveFunc() {
input := []byte(`tschüß; до свидания`)
b := make([]byte, len(input))
t := transform.RemoveFunc(unicode.IsSpace)
n, _, _ := t.Transform(b, input, true)
fmt.Println(string(b[:n]))
t = transform.RemoveFunc(func(r rune) bool {
return !unicode.Is(unicode.Latin, r)
})
n, _, _ = t.Transform(b, input, true)
fmt.Println(string(b[:n]))
n, _, _ = t.Transform(b, norm.NFD.Bytes(input), true)
fmt.Println(string(b[:n]))
// Output:
// tschüß;досвидания
// tschüß
// tschuß
}

View File

@@ -0,0 +1,496 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package transform provides reader and writer wrappers that transform the
// bytes passing through as well as various transformations. Example
// transformations provided by other packages include normalization and
// conversion between character sets.
package transform
import (
"errors"
"io"
"unicode/utf8"
)
var (
// ErrShortDst means that the destination buffer was too short to
// receive all of the transformed bytes.
ErrShortDst = errors.New("transform: short destination buffer")
// ErrShortSrc means that the source buffer has insufficient data to
// complete the transformation.
ErrShortSrc = errors.New("transform: short source buffer")
// errInconsistentByteCount means that Transform returned success (nil
// error) but also returned nSrc inconsistent with the src argument.
errInconsistentByteCount = errors.New("transform: inconsistent byte count returned")
// errShortInternal means that an internal buffer is not large enough
// to make progress and the Transform operation must be aborted.
errShortInternal = errors.New("transform: short internal buffer")
)
// Transformer transforms bytes.
type Transformer interface {
// Transform writes to dst the transformed bytes read from src, and
// returns the number of dst bytes written and src bytes read. The
// atEOF argument tells whether src represents the last bytes of the
// input.
//
// Callers should always process the nDst bytes produced and account
// for the nSrc bytes consumed before considering the error err.
//
// A nil error means that all of the transformed bytes (whether freshly
// transformed from src or left over from previous Transform calls)
// were written to dst. A nil error can be returned regardless of
// whether atEOF is true. If err is nil then nSrc must equal len(src);
// the converse is not necessarily true.
//
// ErrShortDst means that dst was too short to receive all of the
// transformed bytes. ErrShortSrc means that src had insufficient data
// to complete the transformation. If both conditions apply, then
// either error may be returned. Other than the error conditions listed
// here, implementations are free to report other errors that arise.
Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error)
}
// TODO: Do we require that a Transformer be reusable if it returns a nil error
// or do we always require a reset after use? Is Reset mandatory or optional?
// Reader wraps another io.Reader by transforming the bytes read.
type Reader struct {
r io.Reader
t Transformer
err error
// dst[dst0:dst1] contains bytes that have been transformed by t but
// not yet copied out via Read.
dst []byte
dst0, dst1 int
// src[src0:src1] contains bytes that have been read from r but not
// yet transformed through t.
src []byte
src0, src1 int
// transformComplete is whether the transformation is complete,
// regardless of whether or not it was successful.
transformComplete bool
}
const defaultBufSize = 4096
// NewReader returns a new Reader that wraps r by transforming the bytes read
// via t.
func NewReader(r io.Reader, t Transformer) *Reader {
return &Reader{
r: r,
t: t,
dst: make([]byte, defaultBufSize),
src: make([]byte, defaultBufSize),
}
}
// Read implements the io.Reader interface.
func (r *Reader) Read(p []byte) (int, error) {
n, err := 0, error(nil)
for {
// Copy out any transformed bytes and return the final error if we are done.
if r.dst0 != r.dst1 {
n = copy(p, r.dst[r.dst0:r.dst1])
r.dst0 += n
if r.dst0 == r.dst1 && r.transformComplete {
return n, r.err
}
return n, nil
} else if r.transformComplete {
return 0, r.err
}
// Try to transform some source bytes, or to flush the transformer if we
// are out of source bytes. We do this even if r.r.Read returned an error.
// As the io.Reader documentation says, "process the n > 0 bytes returned
// before considering the error".
if r.src0 != r.src1 || r.err != nil {
r.dst0 = 0
r.dst1, n, err = r.t.Transform(r.dst, r.src[r.src0:r.src1], r.err == io.EOF)
r.src0 += n
switch {
case err == nil:
if r.src0 != r.src1 {
r.err = errInconsistentByteCount
}
// The Transform call was successful; we are complete if we
// cannot read more bytes into src.
r.transformComplete = r.err != nil
continue
case err == ErrShortDst && r.dst1 != 0:
// Make room in dst by copying out, and try again.
continue
case err == ErrShortSrc && r.src1-r.src0 != len(r.src) && r.err == nil:
// Read more bytes into src via the code below, and try again.
default:
r.transformComplete = true
// The reader error (r.err) takes precedence over the
// transformer error (err) unless r.err is nil or io.EOF.
if r.err == nil || r.err == io.EOF {
r.err = err
}
continue
}
}
// Move any untransformed source bytes to the start of the buffer
// and read more bytes.
if r.src0 != 0 {
r.src0, r.src1 = 0, copy(r.src, r.src[r.src0:r.src1])
}
n, r.err = r.r.Read(r.src[r.src1:])
r.src1 += n
}
}
// TODO: implement ReadByte (and ReadRune??).
// Writer wraps another io.Writer by transforming the bytes read.
// The user needs to call Close to flush unwritten bytes that may
// be buffered.
type Writer struct {
w io.Writer
t Transformer
dst []byte
// src[:n] contains bytes that have not yet passed through t.
src []byte
n int
}
// NewWriter returns a new Writer that wraps w by transforming the bytes written
// via t.
func NewWriter(w io.Writer, t Transformer) *Writer {
return &Writer{
w: w,
t: t,
dst: make([]byte, defaultBufSize),
src: make([]byte, defaultBufSize),
}
}
// Write implements the io.Writer interface. If there are not enough
// bytes available to complete a Transform, the bytes will be buffered
// for the next write. Call Close to convert the remaining bytes.
func (w *Writer) Write(data []byte) (n int, err error) {
src := data
if w.n > 0 {
// Append bytes from data to the last remainder.
// TODO: limit the amount copied on first try.
n = copy(w.src[w.n:], data)
w.n += n
src = w.src[:w.n]
}
for {
nDst, nSrc, err := w.t.Transform(w.dst, src, false)
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return n, werr
}
src = src[nSrc:]
if w.n > 0 && len(src) <= n {
// Enough bytes from w.src have been consumed. We make src point
// to data instead to reduce the copying.
w.n = 0
n -= len(src)
src = data[n:]
if n < len(data) && (err == nil || err == ErrShortSrc) {
continue
}
} else {
n += nSrc
}
switch {
case err == ErrShortDst && nDst > 0:
case err == ErrShortSrc && len(src) < len(w.src):
m := copy(w.src, src)
// If w.n > 0, bytes from data were already copied to w.src and n
// was already set to the number of bytes consumed.
if w.n == 0 {
n += m
}
w.n = m
return n, nil
case err == nil && w.n > 0:
return n, errInconsistentByteCount
default:
return n, err
}
}
}
// Close implements the io.Closer interface.
func (w *Writer) Close() error {
for src := w.src[:w.n]; len(src) > 0; {
nDst, nSrc, err := w.t.Transform(w.dst, src, true)
if nDst == 0 {
return err
}
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return werr
}
if err != ErrShortDst {
return err
}
src = src[nSrc:]
}
return nil
}
type nop struct{}
func (nop) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := copy(dst, src)
if n < len(src) {
err = ErrShortDst
}
return n, n, err
}
type discard struct{}
func (discard) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
return 0, len(src), nil
}
var (
// Discard is a Transformer for which all Transform calls succeed
// by consuming all bytes and writing nothing.
Discard Transformer = discard{}
// Nop is a Transformer that copies src to dst.
Nop Transformer = nop{}
)
// chain is a sequence of links. A chain with N Transformers has N+1 links and
// N+1 buffers. Of those N+1 buffers, the first and last are the src and dst
// buffers given to chain.Transform and the middle N-1 buffers are intermediate
// buffers owned by the chain. The i'th link transforms bytes from the i'th
// buffer chain.link[i].b at read offset chain.link[i].p to the i+1'th buffer
// chain.link[i+1].b at write offset chain.link[i+1].n, for i in [0, N).
type chain struct {
link []link
err error
// errStart is the index at which the error occurred plus 1. Processing
// errStart at this level at the next call to Transform. As long as
// errStart > 0, chain will not consume any more source bytes.
errStart int
}
func (c *chain) fatalError(errIndex int, err error) {
if i := errIndex + 1; i > c.errStart {
c.errStart = i
c.err = err
}
}
type link struct {
t Transformer
// b[p:n] holds the bytes to be transformed by t.
b []byte
p int
n int
}
func (l *link) src() []byte {
return l.b[l.p:l.n]
}
func (l *link) dst() []byte {
return l.b[l.n:]
}
// Chain returns a Transformer that applies t in sequence.
func Chain(t ...Transformer) Transformer {
if len(t) == 0 {
return nop{}
}
c := &chain{link: make([]link, len(t)+1)}
for i, tt := range t {
c.link[i].t = tt
}
// Allocate intermediate buffers.
b := make([][defaultBufSize]byte, len(t)-1)
for i := range b {
c.link[i+1].b = b[i][:]
}
return c
}
// Transform applies the transformers of c in sequence.
func (c *chain) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// Set up src and dst in the chain.
srcL := &c.link[0]
dstL := &c.link[len(c.link)-1]
srcL.b, srcL.p, srcL.n = src, 0, len(src)
dstL.b, dstL.n = dst, 0
var lastFull, needProgress bool // for detecting progress
// i is the index of the next Transformer to apply, for i in [low, high].
// low is the lowest index for which c.link[low] may still produce bytes.
// high is the highest index for which c.link[high] has a Transformer.
// The error returned by Transform determines whether to increase or
// decrease i. We try to completely fill a buffer before converting it.
for low, i, high := c.errStart, c.errStart, len(c.link)-2; low <= i && i <= high; {
in, out := &c.link[i], &c.link[i+1]
nDst, nSrc, err0 := in.t.Transform(out.dst(), in.src(), atEOF && low == i)
out.n += nDst
in.p += nSrc
if i > 0 && in.p == in.n {
in.p, in.n = 0, 0
}
needProgress, lastFull = lastFull, false
switch err0 {
case ErrShortDst:
// Process the destination buffer next. Return if we are already
// at the high index.
if i == high {
return dstL.n, srcL.p, ErrShortDst
}
if out.n != 0 {
i++
// If the Transformer at the next index is not able to process any
// source bytes there is nothing that can be done to make progress
// and the bytes will remain unprocessed. lastFull is used to
// detect this and break out of the loop with a fatal error.
lastFull = true
continue
}
// The destination buffer was too small, but is completely empty.
// Return a fatal error as this transformation can never complete.
c.fatalError(i, errShortInternal)
case ErrShortSrc:
if i == 0 {
// Save ErrShortSrc in err. All other errors take precedence.
err = ErrShortSrc
break
}
// Source bytes were depleted before filling up the destination buffer.
// Verify we made some progress, move the remaining bytes to the errStart
// and try to get more source bytes.
if needProgress && nSrc == 0 || in.n-in.p == len(in.b) {
// There were not enough source bytes to proceed while the source
// buffer cannot hold any more bytes. Return a fatal error as this
// transformation can never complete.
c.fatalError(i, errShortInternal)
break
}
// in.b is an internal buffer and we can make progress.
in.p, in.n = 0, copy(in.b, in.src())
fallthrough
case nil:
// if i == low, we have depleted the bytes at index i or any lower levels.
// In that case we increase low and i. In all other cases we decrease i to
// fetch more bytes before proceeding to the next index.
if i > low {
i--
continue
}
default:
c.fatalError(i, err0)
}
// Exhausted level low or fatal error: increase low and continue
// to process the bytes accepted so far.
i++
low = i
}
// If c.errStart > 0, this means we found a fatal error. We will clear
// all upstream buffers. At this point, no more progress can be made
// downstream, as Transform would have bailed while handling ErrShortDst.
if c.errStart > 0 {
for i := 1; i < c.errStart; i++ {
c.link[i].p, c.link[i].n = 0, 0
}
err, c.errStart, c.err = c.err, 0, nil
}
return dstL.n, srcL.p, err
}
// RemoveFunc returns a Transformer that removes from the input all runes r for
// which f(r) is true. Illegal bytes in the input are replaced by RuneError.
func RemoveFunc(f func(r rune) bool) Transformer {
return removeF(f)
}
type removeF func(r rune) bool
// Transform implements the Transformer interface.
func (t removeF) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for r, sz := rune(0), 0; len(src) > 0; src = src[sz:] {
if r = rune(src[0]); r < utf8.RuneSelf {
sz = 1
} else {
r, sz = utf8.DecodeRune(src)
if sz == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = ErrShortSrc
break
}
// We replace illegal bytes with RuneError. Not doing so might
// otherwise turn a sequence of invalid UTF-8 into valid UTF-8.
// The resulting byte sequence may subsequently contain runes
// for which t(r) is true that were passed unnoticed.
if !t(r) {
if nDst+3 > len(dst) {
err = ErrShortDst
break
}
nDst += copy(dst[nDst:], "\uFFFD")
}
nSrc++
continue
}
}
if !t(r) {
if nDst+sz > len(dst) {
err = ErrShortDst
break
}
nDst += copy(dst[nDst:], src[:sz])
}
nSrc += sz
}
return
}
// Bytes returns a new byte slice with the result of converting b using t.
// If any unrecoverable error occurs it returns nil.
func Bytes(t Transformer, b []byte) []byte {
out := make([]byte, len(b))
n := 0
for {
nDst, nSrc, err := t.Transform(out[n:], b, true)
n += nDst
if err == nil {
return out[:n]
} else if err != ErrShortDst {
return nil
}
b = b[nSrc:]
// Grow the destination buffer.
sz := len(out)
if sz <= 256 {
sz *= 2
} else {
sz += sz >> 1
}
out2 := make([]byte, sz)
copy(out2, out[:n])
out = out2
}
}

View File

@@ -0,0 +1,901 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform
import (
"bytes"
"errors"
"fmt"
"io/ioutil"
"strconv"
"strings"
"testing"
"unicode/utf8"
)
type lowerCaseASCII struct{}
func (lowerCaseASCII) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := len(src)
if n > len(dst) {
n, err = len(dst), ErrShortDst
}
for i, c := range src[:n] {
if 'A' <= c && c <= 'Z' {
c += 'a' - 'A'
}
dst[i] = c
}
return n, n, err
}
var errYouMentionedX = errors.New("you mentioned X")
type dontMentionX struct{}
func (dontMentionX) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := len(src)
if n > len(dst) {
n, err = len(dst), ErrShortDst
}
for i, c := range src[:n] {
if c == 'X' {
return i, i, errYouMentionedX
}
dst[i] = c
}
return n, n, err
}
// doublerAtEOF is a strange Transformer that transforms "this" to "tthhiiss",
// but only if atEOF is true.
type doublerAtEOF struct{}
func (doublerAtEOF) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if !atEOF {
return 0, 0, ErrShortSrc
}
for i, c := range src {
if 2*i+2 >= len(dst) {
return 2 * i, i, ErrShortDst
}
dst[2*i+0] = c
dst[2*i+1] = c
}
return 2 * len(src), len(src), nil
}
// rleDecode and rleEncode implement a toy run-length encoding: "aabbbbbbbbbb"
// is encoded as "2a10b". The decoding is assumed to not contain any numbers.
type rleDecode struct{}
func (rleDecode) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
loop:
for len(src) > 0 {
n := 0
for i, c := range src {
if '0' <= c && c <= '9' {
n = 10*n + int(c-'0')
continue
}
if i == 0 {
return nDst, nSrc, errors.New("rleDecode: bad input")
}
if n > len(dst) {
return nDst, nSrc, ErrShortDst
}
for j := 0; j < n; j++ {
dst[j] = c
}
dst, src = dst[n:], src[i+1:]
nDst, nSrc = nDst+n, nSrc+i+1
continue loop
}
if atEOF {
return nDst, nSrc, errors.New("rleDecode: bad input")
}
return nDst, nSrc, ErrShortSrc
}
return nDst, nSrc, nil
}
type rleEncode struct {
// allowStutter means that "xxxxxxxx" can be encoded as "5x3x"
// instead of always as "8x".
allowStutter bool
}
func (e rleEncode) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for len(src) > 0 {
n, c0 := len(src), src[0]
for i, c := range src[1:] {
if c != c0 {
n = i + 1
break
}
}
if n == len(src) && !atEOF && !e.allowStutter {
return nDst, nSrc, ErrShortSrc
}
s := strconv.Itoa(n)
if len(s) >= len(dst) {
return nDst, nSrc, ErrShortDst
}
copy(dst, s)
dst[len(s)] = c0
dst, src = dst[len(s)+1:], src[n:]
nDst, nSrc = nDst+len(s)+1, nSrc+n
}
return nDst, nSrc, nil
}
type testCase struct {
desc string
t Transformer
src string
dstSize int
srcSize int
ioSize int
wantStr string
wantErr error
wantIter int // number of iterations taken; 0 means we don't care.
}
func (t testCase) String() string {
return tstr(t.t) + "; " + t.desc
}
func tstr(t Transformer) string {
if stringer, ok := t.(fmt.Stringer); ok {
return stringer.String()
}
s := fmt.Sprintf("%T", t)
return s[1+strings.Index(s, "."):]
}
func (c chain) String() string {
buf := &bytes.Buffer{}
buf.WriteString("Chain(")
for i, l := range c.link[:len(c.link)-1] {
if i != 0 {
fmt.Fprint(buf, ", ")
}
buf.WriteString(tstr(l.t))
}
buf.WriteString(")")
return buf.String()
}
var testCases = []testCase{
{
desc: "basic",
t: lowerCaseASCII{},
src: "Hello WORLD.",
dstSize: 100,
srcSize: 100,
wantStr: "hello world.",
},
{
desc: "small dst",
t: lowerCaseASCII{},
src: "Hello WORLD.",
dstSize: 3,
srcSize: 100,
wantStr: "hello world.",
},
{
desc: "small src",
t: lowerCaseASCII{},
src: "Hello WORLD.",
dstSize: 100,
srcSize: 4,
wantStr: "hello world.",
},
{
desc: "small buffers",
t: lowerCaseASCII{},
src: "Hello WORLD.",
dstSize: 3,
srcSize: 4,
wantStr: "hello world.",
},
{
desc: "very small buffers",
t: lowerCaseASCII{},
src: "Hello WORLD.",
dstSize: 1,
srcSize: 1,
wantStr: "hello world.",
},
{
desc: "basic",
t: dontMentionX{},
src: "The First Rule of Transform Club: don't mention Mister X, ever.",
dstSize: 100,
srcSize: 100,
wantStr: "The First Rule of Transform Club: don't mention Mister ",
wantErr: errYouMentionedX,
},
{
desc: "small buffers",
t: dontMentionX{},
src: "The First Rule of Transform Club: don't mention Mister X, ever.",
dstSize: 10,
srcSize: 10,
wantStr: "The First Rule of Transform Club: don't mention Mister ",
wantErr: errYouMentionedX,
},
{
desc: "very small buffers",
t: dontMentionX{},
src: "The First Rule of Transform Club: don't mention Mister X, ever.",
dstSize: 1,
srcSize: 1,
wantStr: "The First Rule of Transform Club: don't mention Mister ",
wantErr: errYouMentionedX,
},
{
desc: "only transform at EOF",
t: doublerAtEOF{},
src: "this",
dstSize: 100,
srcSize: 100,
wantStr: "tthhiiss",
},
{
desc: "basic",
t: rleDecode{},
src: "1a2b3c10d11e0f1g",
dstSize: 100,
srcSize: 100,
wantStr: "abbcccddddddddddeeeeeeeeeeeg",
},
{
desc: "long",
t: rleDecode{},
src: "12a23b34c45d56e99z",
dstSize: 100,
srcSize: 100,
wantStr: strings.Repeat("a", 12) +
strings.Repeat("b", 23) +
strings.Repeat("c", 34) +
strings.Repeat("d", 45) +
strings.Repeat("e", 56) +
strings.Repeat("z", 99),
},
{
desc: "tight buffers",
t: rleDecode{},
src: "1a2b3c10d11e0f1g",
dstSize: 11,
srcSize: 3,
wantStr: "abbcccddddddddddeeeeeeeeeeeg",
},
{
desc: "short dst",
t: rleDecode{},
src: "1a2b3c10d11e0f1g",
dstSize: 10,
srcSize: 3,
wantStr: "abbcccdddddddddd",
wantErr: ErrShortDst,
},
{
desc: "short src",
t: rleDecode{},
src: "1a2b3c10d11e0f1g",
dstSize: 11,
srcSize: 2,
ioSize: 2,
wantStr: "abbccc",
wantErr: ErrShortSrc,
},
{
desc: "basic",
t: rleEncode{},
src: "abbcccddddddddddeeeeeeeeeeeg",
dstSize: 100,
srcSize: 100,
wantStr: "1a2b3c10d11e1g",
},
{
desc: "long",
t: rleEncode{},
src: strings.Repeat("a", 12) +
strings.Repeat("b", 23) +
strings.Repeat("c", 34) +
strings.Repeat("d", 45) +
strings.Repeat("e", 56) +
strings.Repeat("z", 99),
dstSize: 100,
srcSize: 100,
wantStr: "12a23b34c45d56e99z",
},
{
desc: "tight buffers",
t: rleEncode{},
src: "abbcccddddddddddeeeeeeeeeeeg",
dstSize: 3,
srcSize: 12,
wantStr: "1a2b3c10d11e1g",
},
{
desc: "short dst",
t: rleEncode{},
src: "abbcccddddddddddeeeeeeeeeeeg",
dstSize: 2,
srcSize: 12,
wantStr: "1a2b3c",
wantErr: ErrShortDst,
},
{
desc: "short src",
t: rleEncode{},
src: "abbcccddddddddddeeeeeeeeeeeg",
dstSize: 3,
srcSize: 11,
ioSize: 11,
wantStr: "1a2b3c10d",
wantErr: ErrShortSrc,
},
{
desc: "allowStutter = false",
t: rleEncode{allowStutter: false},
src: "aaaabbbbbbbbccccddddd",
dstSize: 10,
srcSize: 10,
wantStr: "4a8b4c5d",
},
{
desc: "allowStutter = true",
t: rleEncode{allowStutter: true},
src: "aaaabbbbbbbbccccddddd",
dstSize: 10,
srcSize: 10,
ioSize: 10,
wantStr: "4a6b2b4c4d1d",
},
}
func TestReader(t *testing.T) {
for _, tc := range testCases {
reset(tc.t)
r := NewReader(strings.NewReader(tc.src), tc.t)
// Differently sized dst and src buffers are not part of the
// exported API. We override them manually.
r.dst = make([]byte, tc.dstSize)
r.src = make([]byte, tc.srcSize)
got, err := ioutil.ReadAll(r)
str := string(got)
if str != tc.wantStr || err != tc.wantErr {
t.Errorf("%s:\ngot %q, %v\nwant %q, %v", tc, str, err, tc.wantStr, tc.wantErr)
}
}
}
func reset(t Transformer) {
var dst [128]byte
for err := ErrShortDst; err != nil; {
_, _, err = t.Transform(dst[:], nil, true)
}
}
func TestWriter(t *testing.T) {
tests := append(testCases, chainTests()...)
for _, tc := range tests {
sizes := []int{1, 2, 3, 4, 5, 10, 100, 1000}
if tc.ioSize > 0 {
sizes = []int{tc.ioSize}
}
for _, sz := range sizes {
bb := &bytes.Buffer{}
reset(tc.t)
w := NewWriter(bb, tc.t)
// Differently sized dst and src buffers are not part of the
// exported API. We override them manually.
w.dst = make([]byte, tc.dstSize)
w.src = make([]byte, tc.srcSize)
src := make([]byte, sz)
var err error
for b := tc.src; len(b) > 0 && err == nil; {
n := copy(src, b)
b = b[n:]
m := 0
m, err = w.Write(src[:n])
if m != n && err == nil {
t.Errorf("%s:%d: did not consume all bytes %d < %d", tc, sz, m, n)
}
}
if err == nil {
err = w.Close()
}
str := bb.String()
if str != tc.wantStr || err != tc.wantErr {
t.Errorf("%s:%d:\ngot %q, %v\nwant %q, %v", tc, sz, str, err, tc.wantStr, tc.wantErr)
}
}
}
}
func TestNop(t *testing.T) {
testCases := []struct {
str string
dstSize int
err error
}{
{"", 0, nil},
{"", 10, nil},
{"a", 0, ErrShortDst},
{"a", 1, nil},
{"a", 10, nil},
}
for i, tc := range testCases {
dst := make([]byte, tc.dstSize)
nDst, nSrc, err := Nop.Transform(dst, []byte(tc.str), true)
want := tc.str
if tc.dstSize < len(want) {
want = want[:tc.dstSize]
}
if got := string(dst[:nDst]); got != want || err != tc.err || nSrc != nDst {
t.Errorf("%d:\ngot %q, %d, %v\nwant %q, %d, %v", i, got, nSrc, err, want, nDst, tc.err)
}
}
}
func TestDiscard(t *testing.T) {
testCases := []struct {
str string
dstSize int
}{
{"", 0},
{"", 10},
{"a", 0},
{"ab", 10},
}
for i, tc := range testCases {
nDst, nSrc, err := Discard.Transform(make([]byte, tc.dstSize), []byte(tc.str), true)
if nDst != 0 || nSrc != len(tc.str) || err != nil {
t.Errorf("%d:\ngot %q, %d, %v\nwant 0, %d, nil", i, nDst, nSrc, err, len(tc.str))
}
}
}
// mkChain creates a Chain transformer. x must be alternating between transformer
// and bufSize, like T, (sz, T)*
func mkChain(x ...interface{}) *chain {
t := []Transformer{}
for i := 0; i < len(x); i += 2 {
t = append(t, x[i].(Transformer))
}
c := Chain(t...).(*chain)
for i, j := 1, 1; i < len(x); i, j = i+2, j+1 {
c.link[j].b = make([]byte, x[i].(int))
}
return c
}
func chainTests() []testCase {
return []testCase{
{
desc: "nil error",
t: mkChain(rleEncode{}, 100, lowerCaseASCII{}),
src: "ABB",
dstSize: 100,
srcSize: 100,
wantStr: "1a2b",
wantErr: nil,
wantIter: 1,
},
{
desc: "short dst buffer",
t: mkChain(lowerCaseASCII{}, 3, rleDecode{}),
src: "1a2b3c10d11e0f1g",
dstSize: 10,
srcSize: 3,
wantStr: "abbcccdddddddddd",
wantErr: ErrShortDst,
},
{
desc: "short internal dst buffer",
t: mkChain(lowerCaseASCII{}, 3, rleDecode{}, 10, Nop),
src: "1a2b3c10d11e0f1g",
dstSize: 100,
srcSize: 3,
wantStr: "abbcccdddddddddd",
wantErr: errShortInternal,
},
{
desc: "short internal dst buffer from input",
t: mkChain(rleDecode{}, 10, Nop),
src: "1a2b3c10d11e0f1g",
dstSize: 100,
srcSize: 3,
wantStr: "abbcccdddddddddd",
wantErr: errShortInternal,
},
{
desc: "empty short internal dst buffer",
t: mkChain(lowerCaseASCII{}, 3, rleDecode{}, 10, Nop),
src: "4a7b11e0f1g",
dstSize: 100,
srcSize: 3,
wantStr: "aaaabbbbbbb",
wantErr: errShortInternal,
},
{
desc: "empty short internal dst buffer from input",
t: mkChain(rleDecode{}, 10, Nop),
src: "4a7b11e0f1g",
dstSize: 100,
srcSize: 3,
wantStr: "aaaabbbbbbb",
wantErr: errShortInternal,
},
{
desc: "short internal src buffer after full dst buffer",
t: mkChain(Nop, 5, rleEncode{}, 10, Nop),
src: "cccccddddd",
dstSize: 100,
srcSize: 100,
wantStr: "",
wantErr: errShortInternal,
wantIter: 1,
},
{
desc: "short internal src buffer after short dst buffer; test lastFull",
t: mkChain(rleDecode{}, 5, rleEncode{}, 4, Nop),
src: "2a1b4c6d",
dstSize: 100,
srcSize: 100,
wantStr: "2a1b",
wantErr: errShortInternal,
},
{
desc: "short internal src buffer after successful complete fill",
t: mkChain(Nop, 3, rleDecode{}),
src: "123a4b",
dstSize: 4,
srcSize: 3,
wantStr: "",
wantErr: errShortInternal,
wantIter: 1,
},
{
desc: "short internal src buffer after short dst buffer; test lastFull",
t: mkChain(rleDecode{}, 5, rleEncode{}),
src: "2a1b4c6d",
dstSize: 4,
srcSize: 100,
wantStr: "2a1b",
wantErr: errShortInternal,
},
{
desc: "short src buffer",
t: mkChain(rleEncode{}, 5, Nop),
src: "abbcccddddeeeee",
dstSize: 4,
srcSize: 4,
ioSize: 4,
wantStr: "1a2b3c",
wantErr: ErrShortSrc,
},
{
desc: "process all in one go",
t: mkChain(rleEncode{}, 5, Nop),
src: "abbcccddddeeeeeffffff",
dstSize: 100,
srcSize: 100,
wantStr: "1a2b3c4d5e6f",
wantErr: nil,
wantIter: 1,
},
{
desc: "complete processing downstream after error",
t: mkChain(dontMentionX{}, 2, rleDecode{}, 5, Nop),
src: "3a4b5eX",
dstSize: 100,
srcSize: 100,
ioSize: 100,
wantStr: "aaabbbbeeeee",
wantErr: errYouMentionedX,
},
{
desc: "return downstream fatal errors first (followed by short dst)",
t: mkChain(dontMentionX{}, 8, rleDecode{}, 4, Nop),
src: "3a4b5eX",
dstSize: 100,
srcSize: 100,
ioSize: 100,
wantStr: "aaabbbb",
wantErr: errShortInternal,
},
{
desc: "return downstream fatal errors first (followed by short src)",
t: mkChain(dontMentionX{}, 5, Nop, 1, rleDecode{}),
src: "1a5bX",
dstSize: 100,
srcSize: 100,
ioSize: 100,
wantStr: "",
wantErr: errShortInternal,
},
{
desc: "short internal",
t: mkChain(Nop, 11, rleEncode{}, 3, Nop),
src: "abbcccddddddddddeeeeeeeeeeeg",
dstSize: 3,
srcSize: 100,
wantStr: "1a2b3c10d",
wantErr: errShortInternal,
},
}
}
func doTransform(tc testCase) (res string, iter int, err error) {
reset(tc.t)
dst := make([]byte, tc.dstSize)
out, in := make([]byte, 0, 2*len(tc.src)), []byte(tc.src)
for {
iter++
src, atEOF := in, true
if len(src) > tc.srcSize {
src, atEOF = src[:tc.srcSize], false
}
nDst, nSrc, err := tc.t.Transform(dst, src, atEOF)
out = append(out, dst[:nDst]...)
in = in[nSrc:]
switch {
case err == nil && len(in) != 0:
case err == ErrShortSrc && nSrc > 0:
case err == ErrShortDst && nDst > 0:
default:
return string(out), iter, err
}
}
}
func TestChain(t *testing.T) {
if c, ok := Chain().(nop); !ok {
t.Errorf("empty chain: %v; want Nop", c)
}
// Test Chain for a single Transformer.
for _, tc := range testCases {
tc.t = Chain(tc.t)
str, _, err := doTransform(tc)
if str != tc.wantStr || err != tc.wantErr {
t.Errorf("%s:\ngot %q, %v\nwant %q, %v", tc, str, err, tc.wantStr, tc.wantErr)
}
}
tests := chainTests()
sizes := []int{1, 2, 3, 4, 5, 7, 10, 100, 1000}
addTest := func(tc testCase, t *chain) {
if t.link[0].t != tc.t && tc.wantErr == ErrShortSrc {
tc.wantErr = errShortInternal
}
if t.link[len(t.link)-2].t != tc.t && tc.wantErr == ErrShortDst {
tc.wantErr = errShortInternal
}
tc.t = t
tests = append(tests, tc)
}
for _, tc := range testCases {
for _, sz := range sizes {
tt := tc
tt.dstSize = sz
addTest(tt, mkChain(tc.t, tc.dstSize, Nop))
addTest(tt, mkChain(tc.t, tc.dstSize, Nop, 2, Nop))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Nop))
if sz >= tc.dstSize && (tc.wantErr != ErrShortDst || sz == tc.dstSize) {
addTest(tt, mkChain(Nop, tc.srcSize, tc.t))
addTest(tt, mkChain(Nop, 100, Nop, tc.srcSize, tc.t))
}
}
}
for _, tc := range testCases {
tt := tc
tt.dstSize = 1
tt.wantStr = ""
addTest(tt, mkChain(tc.t, tc.dstSize, Discard))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Discard))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Nop, tc.dstSize, Discard))
}
for _, tc := range testCases {
tt := tc
tt.dstSize = 100
tt.wantStr = strings.Replace(tc.src, "0f", "", -1)
// Chain encoders and decoders.
if _, ok := tc.t.(rleEncode); ok && tc.wantErr == nil {
addTest(tt, mkChain(tc.t, tc.dstSize, Nop, 1000, rleDecode{}))
addTest(tt, mkChain(tc.t, tc.dstSize, Nop, tc.dstSize, rleDecode{}))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Nop, 100, rleDecode{}))
// decoding needs larger destinations
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, rleDecode{}, 100, Nop))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Nop, 100, rleDecode{}, 100, Nop))
} else if _, ok := tc.t.(rleDecode); ok && tc.wantErr == nil {
// The internal buffer size may need to be the sum of the maximum segment
// size of the two encoders!
addTest(tt, mkChain(tc.t, 2*tc.dstSize, rleEncode{}))
addTest(tt, mkChain(tc.t, tc.dstSize, Nop, 101, rleEncode{}))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Nop, 100, rleEncode{}))
addTest(tt, mkChain(Nop, tc.srcSize, tc.t, tc.dstSize, Nop, 200, rleEncode{}, 100, Nop))
}
}
for _, tc := range tests {
str, iter, err := doTransform(tc)
mi := tc.wantIter != 0 && tc.wantIter != iter
if str != tc.wantStr || err != tc.wantErr || mi {
t.Errorf("%s:\ngot iter:%d, %q, %v\nwant iter:%d, %q, %v", tc, iter, str, err, tc.wantIter, tc.wantStr, tc.wantErr)
}
break
}
}
func TestRemoveFunc(t *testing.T) {
filter := RemoveFunc(func(r rune) bool {
return strings.IndexRune("ab\u0300\u1234,", r) != -1
})
tests := []testCase{
{
src: ",",
wantStr: "",
},
{
src: "c",
wantStr: "c",
},
{
src: "\u2345",
wantStr: "\u2345",
},
{
src: "tschüß",
wantStr: "tschüß",
},
{
src: ",до,свидания,",
wantStr: "досвидания",
},
{
src: "a\xbd\xb2=\xbc ⌘",
wantStr: "\uFFFD\uFFFD=\uFFFD ⌘",
},
{
// If we didn't replace illegal bytes with RuneError, the result
// would be \u0300 or the code would need to be more complex.
src: "\xcc\u0300\x80",
wantStr: "\uFFFD\uFFFD",
},
{
src: "\xcc\u0300\x80",
dstSize: 3,
wantStr: "\uFFFD\uFFFD",
wantIter: 2,
},
{
src: "\u2345",
dstSize: 2,
wantStr: "",
wantErr: ErrShortDst,
},
{
src: "\xcc",
dstSize: 2,
wantStr: "",
wantErr: ErrShortDst,
},
{
src: "\u0300",
dstSize: 2,
srcSize: 1,
wantStr: "",
wantErr: ErrShortSrc,
},
{
t: RemoveFunc(func(r rune) bool {
return r == utf8.RuneError
}),
src: "\xcc\u0300\x80",
wantStr: "\u0300",
},
}
for _, tc := range tests {
tc.desc = tc.src
if tc.t == nil {
tc.t = filter
}
if tc.dstSize == 0 {
tc.dstSize = 100
}
if tc.srcSize == 0 {
tc.srcSize = 100
}
str, iter, err := doTransform(tc)
mi := tc.wantIter != 0 && tc.wantIter != iter
if str != tc.wantStr || err != tc.wantErr || mi {
t.Errorf("%+q:\ngot iter:%d, %+q, %v\nwant iter:%d, %+q, %v", tc.src, iter, str, err, tc.wantIter, tc.wantStr, tc.wantErr)
}
tc.src = str
idem, _, _ := doTransform(tc)
if str != idem {
t.Errorf("%+q: found %+q; want %+q", tc.src, idem, str)
}
}
}
func TestBytes(t *testing.T) {
for _, tt := range append(testCases, chainTests()...) {
if tt.desc == "allowStutter = true" {
// We don't have control over the buffer size, so we eliminate tests
// that depend on a specific buffer size being set.
continue
}
got := Bytes(tt.t, []byte(tt.src))
if tt.wantErr != nil {
if tt.wantErr != ErrShortDst && tt.wantErr != ErrShortSrc {
// Bytes should return nil for non-recoverable errors.
if g, w := (got == nil), (tt.wantErr != nil); g != w {
t.Errorf("%s:error: got %v; want %v", tt.desc, g, w)
}
}
// The output strings in the tests that expect an error will
// almost certainly not be the same as the result of Bytes.
continue
}
if string(got) != tt.wantStr {
t.Errorf("%s:string: got %q; want %q", tt.desc, got, tt.wantStr)
}
}
}

View File

@@ -0,0 +1,30 @@
# Copyright 2011 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
maketables: maketables.go triegen.go
go build $^
maketesttables: maketesttables.go triegen.go
go build $^
normregtest: normregtest.go
go build $^
tables: maketables
./maketables > tables.go
gofmt -w tables.go
trietesttables: maketesttables
./maketesttables > triedata_test.go
gofmt -w triedata_test.go
# Downloads from www.unicode.org, so not part
# of standard test scripts.
test: testtables regtest
testtables: maketables
./maketables -test > data_test.go && go test -tags=test
regtest: normregtest
./normregtest

View File

@@ -0,0 +1,514 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "unicode/utf8"
const (
maxNonStarters = 30
// The maximum number of characters needed for a buffer is
// maxNonStarters + 1 for the starter + 1 for the GCJ
maxBufferSize = maxNonStarters + 2
maxNFCExpansion = 3 // NFC(0x1D160)
maxNFKCExpansion = 18 // NFKC(0xFDFA)
maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
)
// ssState is used for reporting the segment state after inserting a rune.
// It is returned by streamSafe.next.
type ssState int
const (
// Indicates a rune was successfully added to the segment.
ssSuccess ssState = iota
// Indicates a rune starts a new segment and should not be added.
ssStarter
// Indicates a rune caused a segment overflow and a CGJ should be inserted.
ssOverflow
)
// streamSafe implements the policy of when a CGJ should be inserted.
type streamSafe uint8
// mkStreamSafe is a shorthand for declaring a streamSafe var and calling
// first on it.
func mkStreamSafe(p Properties) streamSafe {
return streamSafe(p.nTrailingNonStarters())
}
// first inserts the first rune of a segment.
func (ss *streamSafe) first(p Properties) {
if *ss != 0 {
panic("!= 0")
}
*ss = streamSafe(p.nTrailingNonStarters())
}
// insert returns a ssState value to indicate whether a rune represented by p
// can be inserted.
func (ss *streamSafe) next(p Properties) ssState {
if *ss > maxNonStarters {
panic("streamSafe was not reset")
}
n := p.nLeadingNonStarters()
if *ss += streamSafe(n); *ss > maxNonStarters {
*ss = 0
return ssOverflow
}
// The Stream-Safe Text Processing prescribes that the counting can stop
// as soon as a starter is encountered. However, there are some starters,
// like Jamo V and T, that can combine with other runes, leaving their
// successive non-starters appended to the previous, possibly causing an
// overflow. We will therefore consider any rune with a non-zero nLead to
// be a non-starter. Note that it always hold that if nLead > 0 then
// nLead == nTrail.
if n == 0 {
*ss = 0
return ssStarter
}
return ssSuccess
}
// backwards is used for checking for overflow and segment starts
// when traversing a string backwards. Users do not need to call first
// for the first rune. The state of the streamSafe retains the count of
// the non-starters loaded.
func (ss *streamSafe) backwards(p Properties) ssState {
if *ss > maxNonStarters {
panic("streamSafe was not reset")
}
c := *ss + streamSafe(p.nTrailingNonStarters())
if c > maxNonStarters {
return ssOverflow
}
*ss = c
if p.nLeadingNonStarters() == 0 {
return ssStarter
}
return ssSuccess
}
func (ss streamSafe) isMax() bool {
return ss == maxNonStarters
}
// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
const GraphemeJoiner = "\u034F"
// reorderBuffer is used to normalize a single segment. Characters inserted with
// insert are decomposed and reordered based on CCC. The compose method can
// be used to recombine characters. Note that the byte buffer does not hold
// the UTF-8 characters in order. Only the rune array is maintained in sorted
// order. flush writes the resulting segment to a byte array.
type reorderBuffer struct {
rune [maxBufferSize]Properties // Per character info.
byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
nbyte uint8 // Number or bytes.
ss streamSafe // For limiting length of non-starter sequence.
nrune int // Number of runeInfos.
f formInfo
src input
nsrc int
tmpBytes input
out []byte
flushF func(*reorderBuffer) bool
}
func (rb *reorderBuffer) init(f Form, src []byte) {
rb.f = *formTable[f]
rb.src.setBytes(src)
rb.nsrc = len(src)
rb.ss = 0
}
func (rb *reorderBuffer) initString(f Form, src string) {
rb.f = *formTable[f]
rb.src.setString(src)
rb.nsrc = len(src)
rb.ss = 0
}
func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
rb.out = out
rb.flushF = f
}
// reset discards all characters from the buffer.
func (rb *reorderBuffer) reset() {
rb.nrune = 0
rb.nbyte = 0
rb.ss = 0
}
func (rb *reorderBuffer) doFlush() bool {
if rb.f.composing {
rb.compose()
}
res := rb.flushF(rb)
rb.reset()
return res
}
// appendFlush appends the normalized segment to rb.out.
func appendFlush(rb *reorderBuffer) bool {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
rb.out = append(rb.out, rb.byte[start:end]...)
}
return true
}
// flush appends the normalized segment to out and resets rb.
func (rb *reorderBuffer) flush(out []byte) []byte {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
out = append(out, rb.byte[start:end]...)
}
rb.reset()
return out
}
// flushCopy copies the normalized segment to buf and resets rb.
// It returns the number of bytes written to buf.
func (rb *reorderBuffer) flushCopy(buf []byte) int {
p := 0
for i := 0; i < rb.nrune; i++ {
runep := rb.rune[i]
p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
}
rb.reset()
return p
}
// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
// It returns false if the buffer is not large enough to hold the rune.
// It is used internally by insert and insertString only.
func (rb *reorderBuffer) insertOrdered(info Properties) {
n := rb.nrune
b := rb.rune[:]
cc := info.ccc
if cc > 0 {
// Find insertion position + move elements to make room.
for ; n > 0; n-- {
if b[n-1].ccc <= cc {
break
}
b[n] = b[n-1]
}
}
rb.nrune += 1
pos := uint8(rb.nbyte)
rb.nbyte += utf8.UTFMax
info.pos = pos
b[n] = info
}
// insertErr is an error code returned by insert. Using this type instead
// of error improves performance up to 20% for many of the benchmarks.
type insertErr int
const (
iSuccess insertErr = -iota
iShortDst
iShortSrc
)
// insertFlush inserts the given rune in the buffer ordered by CCC.
// If a decomposition with multiple segments are encountered, they leading
// ones are flushed.
// It returns a non-zero error code if the rune was not inserted.
func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
if rune := src.hangul(i); rune != 0 {
rb.decomposeHangul(rune)
return iSuccess
}
if info.hasDecomposition() {
return rb.insertDecomposed(info.Decomposition())
}
rb.insertSingle(src, i, info)
return iSuccess
}
// insertUnsafe inserts the given rune in the buffer ordered by CCC.
// It is assumed there is sufficient space to hold the runes. It is the
// responsibility of the caller to ensure this. This can be done by checking
// the state returned by the streamSafe type.
func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
if rune := src.hangul(i); rune != 0 {
rb.decomposeHangul(rune)
}
if info.hasDecomposition() {
// TODO: inline.
rb.insertDecomposed(info.Decomposition())
} else {
rb.insertSingle(src, i, info)
}
}
// insertDecomposed inserts an entry in to the reorderBuffer for each rune
// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
// It flushes the buffer on each new segment start.
func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
rb.tmpBytes.setBytes(dcomp)
for i := 0; i < len(dcomp); {
info := rb.f.info(rb.tmpBytes, i)
if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
return iShortDst
}
i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
rb.insertOrdered(info)
}
return iSuccess
}
// insertSingle inserts an entry in the reorderBuffer for the rune at
// position i. info is the runeInfo for the rune at position i.
func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
rb.insertOrdered(info)
}
// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
func (rb *reorderBuffer) insertCGJ() {
rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
}
// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
func (rb *reorderBuffer) appendRune(r rune) {
bn := rb.nbyte
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
rb.nbyte += utf8.UTFMax
rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
rb.nrune++
}
// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
func (rb *reorderBuffer) assignRune(pos int, r rune) {
bn := rb.rune[pos].pos
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
}
// runeAt returns the rune at position n. It is used for Hangul and recomposition.
func (rb *reorderBuffer) runeAt(n int) rune {
inf := rb.rune[n]
r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
return r
}
// bytesAt returns the UTF-8 encoding of the rune at position n.
// It is used for Hangul and recomposition.
func (rb *reorderBuffer) bytesAt(n int) []byte {
inf := rb.rune[n]
return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
}
// For Hangul we combine algorithmically, instead of using tables.
const (
hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
hangulBase0 = 0xEA
hangulBase1 = 0xB0
hangulBase2 = 0x80
hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
hangulEnd0 = 0xED
hangulEnd1 = 0x9E
hangulEnd2 = 0xA4
jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
jamoLBase0 = 0xE1
jamoLBase1 = 0x84
jamoLEnd = 0x1113
jamoVBase = 0x1161
jamoVEnd = 0x1176
jamoTBase = 0x11A7
jamoTEnd = 0x11C3
jamoTCount = 28
jamoVCount = 21
jamoVTCount = 21 * 28
jamoLVTCount = 19 * 21 * 28
)
const hangulUTF8Size = 3
func isHangul(b []byte) bool {
if len(b) < hangulUTF8Size {
return false
}
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
func isHangulString(b string) bool {
if len(b) < hangulUTF8Size {
return false
}
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
// Caller must ensure len(b) >= 2.
func isJamoVT(b []byte) bool {
// True if (rune & 0xff00) == jamoLBase
return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
}
func isHangulWithoutJamoT(b []byte) bool {
c, _ := utf8.DecodeRune(b)
c -= hangulBase
return c < jamoLVTCount && c%jamoTCount == 0
}
// decomposeHangul writes the decomposed Hangul to buf and returns the number
// of bytes written. len(buf) should be at least 9.
func decomposeHangul(buf []byte, r rune) int {
const JamoUTF8Len = 3
r -= hangulBase
x := r % jamoTCount
r /= jamoTCount
utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
if x != 0 {
utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
return 3 * JamoUTF8Len
}
return 2 * JamoUTF8Len
}
// decomposeHangul algorithmically decomposes a Hangul rune into
// its Jamo components.
// See http://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
func (rb *reorderBuffer) decomposeHangul(r rune) {
r -= hangulBase
x := r % jamoTCount
r /= jamoTCount
rb.appendRune(jamoLBase + r/jamoVCount)
rb.appendRune(jamoVBase + r%jamoVCount)
if x != 0 {
rb.appendRune(jamoTBase + x)
}
}
// combineHangul algorithmically combines Jamo character components into Hangul.
// See http://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
func (rb *reorderBuffer) combineHangul(s, i, k int) {
b := rb.rune[:]
bn := rb.nrune
for ; i < bn; i++ {
cccB := b[k-1].ccc
cccC := b[i].ccc
if cccB == 0 {
s = k - 1
}
if s != k-1 && cccB >= cccC {
// b[i] is blocked by greater-equal cccX below it
b[k] = b[i]
k++
} else {
l := rb.runeAt(s) // also used to compare to hangulBase
v := rb.runeAt(i) // also used to compare to jamoT
switch {
case jamoLBase <= l && l < jamoLEnd &&
jamoVBase <= v && v < jamoVEnd:
// 11xx plus 116x to LV
rb.assignRune(s, hangulBase+
(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
case hangulBase <= l && l < hangulEnd &&
jamoTBase < v && v < jamoTEnd &&
((l-hangulBase)%jamoTCount) == 0:
// ACxx plus 11Ax to LVT
rb.assignRune(s, l+v-jamoTBase)
default:
b[k] = b[i]
k++
}
}
}
rb.nrune = k
}
// compose recombines the runes in the buffer.
// It should only be used to recompose a single segment, as it will not
// handle alternations between Hangul and non-Hangul characters correctly.
func (rb *reorderBuffer) compose() {
// UAX #15, section X5 , including Corrigendum #5
// "In any character sequence beginning with starter S, a character C is
// blocked from S if and only if there is some character B between S
// and C, and either B is a starter or it has the same or higher
// combining class as C."
bn := rb.nrune
if bn == 0 {
return
}
k := 1
b := rb.rune[:]
for s, i := 0, 1; i < bn; i++ {
if isJamoVT(rb.bytesAt(i)) {
// Redo from start in Hangul mode. Necessary to support
// U+320E..U+321E in NFKC mode.
rb.combineHangul(s, i, k)
return
}
ii := b[i]
// We can only use combineForward as a filter if we later
// get the info for the combined character. This is more
// expensive than using the filter. Using combinesBackward()
// is safe.
if ii.combinesBackward() {
cccB := b[k-1].ccc
cccC := ii.ccc
blocked := false // b[i] blocked by starter or greater or equal CCC?
if cccB == 0 {
s = k - 1
} else {
blocked = s != k-1 && cccB >= cccC
}
if !blocked {
combined := combine(rb.runeAt(s), rb.runeAt(i))
if combined != 0 {
rb.assignRune(s, combined)
continue
}
}
}
b[k] = b[i]
k++
}
rb.nrune = k
}

View File

@@ -0,0 +1,130 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "testing"
// TestCase is used for most tests.
type TestCase struct {
in []rune
out []rune
}
func runTests(t *testing.T, name string, fm Form, tests []TestCase) {
rb := reorderBuffer{}
rb.init(fm, nil)
for i, test := range tests {
rb.setFlusher(nil, appendFlush)
for j, rune := range test.in {
b := []byte(string(rune))
src := inputBytes(b)
info := rb.f.info(src, 0)
if j == 0 {
rb.ss.first(info)
} else {
rb.ss.next(info)
}
if rb.insertFlush(src, 0, info) < 0 {
t.Errorf("%s:%d: insert failed for rune %d", name, i, j)
}
}
rb.doFlush()
was := string(rb.out)
want := string(test.out)
if len(was) != len(want) {
t.Errorf("%s:%d: length = %d; want %d", name, i, len(was), len(want))
}
if was != want {
k, pfx := pidx(was, want)
t.Errorf("%s:%d: \nwas %s%+q; \nwant %s%+q", name, i, pfx, was[k:], pfx, want[k:])
}
}
}
func TestFlush(t *testing.T) {
const (
hello = "Hello "
world = "world!"
)
buf := make([]byte, maxByteBufferSize)
p := copy(buf, hello)
out := buf[p:]
rb := reorderBuffer{}
rb.initString(NFC, world)
if i := rb.flushCopy(out); i != 0 {
t.Errorf("wrote bytes on flush of empty buffer. (len(out) = %d)", i)
}
for i := range world {
// No need to set streamSafe values for this test.
rb.insertFlush(rb.src, i, rb.f.info(rb.src, i))
n := rb.flushCopy(out)
out = out[n:]
p += n
}
was := buf[:p]
want := hello + world
if string(was) != want {
t.Errorf(`output after flush was "%s"; want "%s"`, string(was), want)
}
if rb.nrune != 0 {
t.Errorf("non-null size of info buffer (rb.nrune == %d)", rb.nrune)
}
if rb.nbyte != 0 {
t.Errorf("non-null size of byte buffer (rb.nbyte == %d)", rb.nbyte)
}
}
var insertTests = []TestCase{
{[]rune{'a'}, []rune{'a'}},
{[]rune{0x300}, []rune{0x300}},
{[]rune{0x300, 0x316}, []rune{0x316, 0x300}}, // CCC(0x300)==230; CCC(0x316)==220
{[]rune{0x316, 0x300}, []rune{0x316, 0x300}},
{[]rune{0x41, 0x316, 0x300}, []rune{0x41, 0x316, 0x300}},
{[]rune{0x41, 0x300, 0x316}, []rune{0x41, 0x316, 0x300}},
{[]rune{0x300, 0x316, 0x41}, []rune{0x316, 0x300, 0x41}},
{[]rune{0x41, 0x300, 0x40, 0x316}, []rune{0x41, 0x300, 0x40, 0x316}},
}
func TestInsert(t *testing.T) {
runTests(t, "TestInsert", NFD, insertTests)
}
var decompositionNFDTest = []TestCase{
{[]rune{0xC0}, []rune{0x41, 0x300}},
{[]rune{0xAC00}, []rune{0x1100, 0x1161}},
{[]rune{0x01C4}, []rune{0x01C4}},
{[]rune{0x320E}, []rune{0x320E}},
{[]rune("음ẻ과"), []rune{0x110B, 0x1173, 0x11B7, 0x65, 0x309, 0x1100, 0x116A}},
}
var decompositionNFKDTest = []TestCase{
{[]rune{0xC0}, []rune{0x41, 0x300}},
{[]rune{0xAC00}, []rune{0x1100, 0x1161}},
{[]rune{0x01C4}, []rune{0x44, 0x5A, 0x030C}},
{[]rune{0x320E}, []rune{0x28, 0x1100, 0x1161, 0x29}},
}
func TestDecomposition(t *testing.T) {
runTests(t, "TestDecompositionNFD", NFD, decompositionNFDTest)
runTests(t, "TestDecompositionNFKD", NFKD, decompositionNFKDTest)
}
var compositionTest = []TestCase{
{[]rune{0x41, 0x300}, []rune{0xC0}},
{[]rune{0x41, 0x316}, []rune{0x41, 0x316}},
{[]rune{0x41, 0x300, 0x35D}, []rune{0xC0, 0x35D}},
{[]rune{0x41, 0x316, 0x300}, []rune{0xC0, 0x316}},
// blocking starter
{[]rune{0x41, 0x316, 0x40, 0x300}, []rune{0x41, 0x316, 0x40, 0x300}},
{[]rune{0x1100, 0x1161}, []rune{0xAC00}},
// parenthesized Hangul, alternate between ASCII and Hangul.
{[]rune{0x28, 0x1100, 0x1161, 0x29}, []rune{0x28, 0xAC00, 0x29}},
}
func TestComposition(t *testing.T) {
runTests(t, "TestComposition", NFC, compositionTest)
}

View File

@@ -0,0 +1,82 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm_test
import (
"bytes"
"fmt"
"unicode/utf8"
"code.google.com/p/go.text/unicode/norm"
)
// EqualSimple uses a norm.Iter to compare two non-normalized
// strings for equivalence.
func EqualSimple(a, b string) bool {
var ia, ib norm.Iter
ia.InitString(norm.NFKD, a)
ib.InitString(norm.NFKD, b)
for !ia.Done() && !ib.Done() {
if !bytes.Equal(ia.Next(), ib.Next()) {
return false
}
}
return ia.Done() && ib.Done()
}
// FindPrefix finds the longest common prefix of ASCII characters
// of a and b.
func FindPrefix(a, b string) int {
i := 0
for ; i < len(a) && i < len(b) && a[i] < utf8.RuneSelf && a[i] == b[i]; i++ {
}
return i
}
// EqualOpt is like EqualSimple, but optimizes the special
// case for ASCII characters.
func EqualOpt(a, b string) bool {
n := FindPrefix(a, b)
a, b = a[n:], b[n:]
var ia, ib norm.Iter
ia.InitString(norm.NFKD, a)
ib.InitString(norm.NFKD, b)
for !ia.Done() && !ib.Done() {
if !bytes.Equal(ia.Next(), ib.Next()) {
return false
}
if n := int64(FindPrefix(a[ia.Pos():], b[ib.Pos():])); n != 0 {
ia.Seek(n, 1)
ib.Seek(n, 1)
}
}
return ia.Done() && ib.Done()
}
var compareTests = []struct{ a, b string }{
{"aaa", "aaa"},
{"aaa", "aab"},
{"a\u0300a", "\u00E0a"},
{"a\u0300\u0320b", "a\u0320\u0300b"},
{"\u1E0A\u0323", "\x44\u0323\u0307"},
// A character that decomposes into multiple segments
// spans several iterations.
{"\u3304", "\u30A4\u30CB\u30F3\u30AF\u3099"},
}
func ExampleIter() {
for i, t := range compareTests {
r0 := EqualSimple(t.a, t.b)
r1 := EqualOpt(t.a, t.b)
fmt.Printf("%d: %v %v\n", i, r0, r1)
}
// Output:
// 0: true true
// 1: false false
// 2: true true
// 3: true true
// 4: true true
// 5: true true
}

View File

@@ -0,0 +1,256 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
// This file contains Form-specific logic and wrappers for data in tables.go.
// Rune info is stored in a separate trie per composing form. A composing form
// and its corresponding decomposing form share the same trie. Each trie maps
// a rune to a uint16. The values take two forms. For v >= 0x8000:
// bits
// 15: 1 (inverse of NFD_QD bit of qcInfo)
// 13..7: qcInfo (see below). isYesD is always true (no decompostion).
// 6..0: ccc (compressed CCC value).
// For v < 0x8000, the respective rune has a decomposition and v is an index
// into a byte array of UTF-8 decomposition sequences and additional info and
// has the form:
// <header> <decomp_byte>* [<tccc> [<lccc>]]
// The header contains the number of bytes in the decomposition (excluding this
// length byte). The two most significant bits of this length byte correspond
// to bit 5 and 4 of qcInfo (see below). The byte sequence itself starts at v+1.
// The byte sequence is followed by a trailing and leading CCC if the values
// for these are not zero. The value of v determines which ccc are appended
// to the sequences. For v < firstCCC, there are none, for v >= firstCCC,
// the sequence is followed by a trailing ccc, and for v >= firstLeadingCC
// there is an additional leading ccc. The value of tccc itself is the
// trailing CCC shifted left 2 bits. The two least-significant bits of tccc
// are the number of trailing non-starters.
const (
qcInfoMask = 0x3F // to clear all but the relevant bits in a qcInfo
headerLenMask = 0x3F // extract the length value from the header byte
headerFlagsMask = 0xC0 // extract the qcInfo bits from the header byte
)
// Properties provides access to normalization properties of a rune.
type Properties struct {
pos uint8 // start position in reorderBuffer; used in composition.go
size uint8 // length of UTF-8 encoding of this rune
ccc uint8 // leading canonical combining class (ccc if not decomposition)
tccc uint8 // trailing canonical combining class (ccc if not decomposition)
nLead uint8 // number of leading non-starters.
flags qcInfo // quick check flags
index uint16
}
// functions dispatchable per form
type lookupFunc func(b input, i int) Properties
// formInfo holds Form-specific functions and tables.
type formInfo struct {
form Form
composing, compatibility bool // form type
info lookupFunc
nextMain iterFunc
}
var formTable []*formInfo
func init() {
formTable = make([]*formInfo, 4)
for i := range formTable {
f := &formInfo{}
formTable[i] = f
f.form = Form(i)
if Form(i) == NFKD || Form(i) == NFKC {
f.compatibility = true
f.info = lookupInfoNFKC
} else {
f.info = lookupInfoNFC
}
f.nextMain = nextDecomposed
if Form(i) == NFC || Form(i) == NFKC {
f.nextMain = nextComposed
f.composing = true
}
}
}
// We do not distinguish between boundaries for NFC, NFD, etc. to avoid
// unexpected behavior for the user. For example, in NFD, there is a boundary
// after 'a'. However, 'a' might combine with modifiers, so from the application's
// perspective it is not a good boundary. We will therefore always use the
// boundaries for the combining variants.
// BoundaryBefore returns true if this rune starts a new segment and
// cannot combine with any rune on the left.
func (p Properties) BoundaryBefore() bool {
if p.ccc == 0 && !p.combinesBackward() {
return true
}
// We assume that the CCC of the first character in a decomposition
// is always non-zero if different from info.ccc and that we can return
// false at this point. This is verified by maketables.
return false
}
// BoundaryAfter returns true if runes cannot combine with or otherwise
// interact with this or previous runes.
func (p Properties) BoundaryAfter() bool {
// TODO: loosen these conditions.
return p.isInert()
}
// We pack quick check data in 4 bits:
// 5: Combines forward (0 == false, 1 == true)
// 4..3: NFC_QC Yes(00), No (10), or Maybe (11)
// 2: NFD_QC Yes (0) or No (1). No also means there is a decomposition.
// 1..0: Number of trailing non-starters.
//
// When all 4 bits are zero, the character is inert, meaning it is never
// influenced by normalization.
type qcInfo uint8
func (p Properties) isYesC() bool { return p.flags&0x10 == 0 }
func (p Properties) isYesD() bool { return p.flags&0x4 == 0 }
func (p Properties) combinesForward() bool { return p.flags&0x20 != 0 }
func (p Properties) combinesBackward() bool { return p.flags&0x8 != 0 } // == isMaybe
func (p Properties) hasDecomposition() bool { return p.flags&0x4 != 0 } // == isNoD
func (p Properties) isInert() bool {
return p.flags&qcInfoMask == 0 && p.ccc == 0
}
func (p Properties) multiSegment() bool {
return p.index >= firstMulti && p.index < endMulti
}
func (p Properties) nLeadingNonStarters() uint8 {
return p.nLead
}
func (p Properties) nTrailingNonStarters() uint8 {
return uint8(p.flags & 0x03)
}
// Decomposition returns the decomposition for the underlying rune
// or nil if there is none.
func (p Properties) Decomposition() []byte {
// TODO: create the decomposition for Hangul?
if p.index == 0 {
return nil
}
i := p.index
n := decomps[i] & headerLenMask
i++
return decomps[i : i+uint16(n)]
}
// Size returns the length of UTF-8 encoding of the rune.
func (p Properties) Size() int {
return int(p.size)
}
// CCC returns the canonical combining class of the underlying rune.
func (p Properties) CCC() uint8 {
if p.index >= firstCCCZeroExcept {
return 0
}
return ccc[p.ccc]
}
// LeadCCC returns the CCC of the first rune in the decomposition.
// If there is no decomposition, LeadCCC equals CCC.
func (p Properties) LeadCCC() uint8 {
return ccc[p.ccc]
}
// TrailCCC returns the CCC of the last rune in the decomposition.
// If there is no decomposition, TrailCCC equals CCC.
func (p Properties) TrailCCC() uint8 {
return ccc[p.tccc]
}
// Recomposition
// We use 32-bit keys instead of 64-bit for the two codepoint keys.
// This clips off the bits of three entries, but we know this will not
// result in a collision. In the unlikely event that changes to
// UnicodeData.txt introduce collisions, the compiler will catch it.
// Note that the recomposition map for NFC and NFKC are identical.
// combine returns the combined rune or 0 if it doesn't exist.
func combine(a, b rune) rune {
key := uint32(uint16(a))<<16 + uint32(uint16(b))
return recompMap[key]
}
func lookupInfoNFC(b input, i int) Properties {
v, sz := b.charinfoNFC(i)
return compInfo(v, sz)
}
func lookupInfoNFKC(b input, i int) Properties {
v, sz := b.charinfoNFKC(i)
return compInfo(v, sz)
}
// Properties returns properties for the first rune in s.
func (f Form) Properties(s []byte) Properties {
if f == NFC || f == NFD {
return compInfo(nfcTrie.lookup(s))
}
return compInfo(nfkcTrie.lookup(s))
}
// PropertiesString returns properties for the first rune in s.
func (f Form) PropertiesString(s string) Properties {
if f == NFC || f == NFD {
return compInfo(nfcTrie.lookupString(s))
}
return compInfo(nfkcTrie.lookupString(s))
}
// compInfo converts the information contained in v and sz
// to a Properties. See the comment at the top of the file
// for more information on the format.
func compInfo(v uint16, sz int) Properties {
if v == 0 {
return Properties{size: uint8(sz)}
} else if v >= 0x8000 {
p := Properties{
size: uint8(sz),
ccc: uint8(v),
tccc: uint8(v),
flags: qcInfo(v >> 8),
}
if p.ccc > 0 || p.combinesBackward() {
p.nLead = uint8(p.flags & 0x3)
}
return p
}
// has decomposition
h := decomps[v]
f := (qcInfo(h&headerFlagsMask) >> 2) | 0x4
p := Properties{size: uint8(sz), flags: f, index: v}
if v >= firstCCC {
v += uint16(h&headerLenMask) + 1
c := decomps[v]
p.tccc = c >> 2
p.flags |= qcInfo(c & 0x3)
if v >= firstLeadingCCC {
p.nLead = c & 0x3
if v >= firstStarterWithNLead {
// We were tricked. Remove the decomposition.
p.flags &= 0x03
p.index = 0
return p
}
p.ccc = decomps[v+1]
}
}
return p
}

View File

@@ -0,0 +1,54 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build test
package norm
import "testing"
func TestProperties(t *testing.T) {
var d runeData
CK := [2]string{"C", "K"}
for k, r := 1, rune(0); r < 0x2ffff; r++ {
if k < len(testData) && r == testData[k].r {
d = testData[k]
k++
}
s := string(r)
for j, p := range []Properties{NFC.PropertiesString(s), NFKC.PropertiesString(s)} {
f := d.f[j]
if p.CCC() != d.ccc {
t.Errorf("%U: ccc(%s): was %d; want %d %X", r, CK[j], p.CCC(), d.ccc, p.index)
}
if p.isYesC() != (f.qc == Yes) {
t.Errorf("%U: YesC(%s): was %v; want %v", r, CK[j], p.isYesC(), f.qc == Yes)
}
if p.combinesBackward() != (f.qc == Maybe) {
t.Errorf("%U: combines backwards(%s): was %v; want %v", r, CK[j], p.combinesBackward(), f.qc == Maybe)
}
if p.nLeadingNonStarters() != d.nLead {
t.Errorf("%U: nLead(%s): was %d; want %d %#v %#v", r, CK[j], p.nLeadingNonStarters(), d.nLead, p, d)
}
if p.nTrailingNonStarters() != d.nTrail {
t.Errorf("%U: nTrail(%s): was %d; want %d %#v %#v", r, CK[j], p.nTrailingNonStarters(), d.nTrail, p, d)
}
if p.combinesForward() != f.combinesForward {
t.Errorf("%U: combines forward(%s): was %v; want %v %#v", r, CK[j], p.combinesForward(), f.combinesForward, p)
}
// Skip Hangul as it is algorithmically computed.
if r >= hangulBase && r < hangulEnd {
continue
}
if p.hasDecomposition() {
if has := f.decomposition != ""; !has {
t.Errorf("%U: hasDecomposition(%s): was %v; want %v", r, CK[j], p.hasDecomposition(), has)
}
if string(p.Decomposition()) != f.decomposition {
t.Errorf("%U: decomp(%s): was %+q; want %+q", r, CK[j], p.Decomposition(), f.decomposition)
}
}
}
}
}

View File

@@ -0,0 +1,105 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "unicode/utf8"
type input struct {
str string
bytes []byte
}
func inputBytes(str []byte) input {
return input{bytes: str}
}
func inputString(str string) input {
return input{str: str}
}
func (in *input) setBytes(str []byte) {
in.str = ""
in.bytes = str
}
func (in *input) setString(str string) {
in.str = str
in.bytes = nil
}
func (in *input) _byte(p int) byte {
if in.bytes == nil {
return in.str[p]
}
return in.bytes[p]
}
func (in *input) skipASCII(p, max int) int {
if in.bytes == nil {
for ; p < max && in.str[p] < utf8.RuneSelf; p++ {
}
} else {
for ; p < max && in.bytes[p] < utf8.RuneSelf; p++ {
}
}
return p
}
func (in *input) skipContinuationBytes(p int) int {
if in.bytes == nil {
for ; p < len(in.str) && !utf8.RuneStart(in.str[p]); p++ {
}
} else {
for ; p < len(in.bytes) && !utf8.RuneStart(in.bytes[p]); p++ {
}
}
return p
}
func (in *input) appendSlice(buf []byte, b, e int) []byte {
if in.bytes != nil {
return append(buf, in.bytes[b:e]...)
}
for i := b; i < e; i++ {
buf = append(buf, in.str[i])
}
return buf
}
func (in *input) copySlice(buf []byte, b, e int) int {
if in.bytes == nil {
return copy(buf, in.str[b:e])
}
return copy(buf, in.bytes[b:e])
}
func (in *input) charinfoNFC(p int) (uint16, int) {
if in.bytes == nil {
return nfcTrie.lookupString(in.str[p:])
}
return nfcTrie.lookup(in.bytes[p:])
}
func (in *input) charinfoNFKC(p int) (uint16, int) {
if in.bytes == nil {
return nfkcTrie.lookupString(in.str[p:])
}
return nfkcTrie.lookup(in.bytes[p:])
}
func (in *input) hangul(p int) (r rune) {
if in.bytes == nil {
if !isHangulString(in.str[p:]) {
return 0
}
r, _ = utf8.DecodeRuneInString(in.str[p:])
} else {
if !isHangul(in.bytes[p:]) {
return 0
}
r, _ = utf8.DecodeRune(in.bytes[p:])
}
return r
}

View File

@@ -0,0 +1,448 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"fmt"
"unicode/utf8"
)
const MaxSegmentSize = maxByteBufferSize
// An Iter iterates over a string or byte slice, while normalizing it
// to a given Form.
type Iter struct {
rb reorderBuffer
buf [maxByteBufferSize]byte
info Properties // first character saved from previous iteration
next iterFunc // implementation of next depends on form
asciiF iterFunc
p int // current position in input source
multiSeg []byte // remainder of multi-segment decomposition
}
type iterFunc func(*Iter) []byte
// Init initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) Init(f Form, src []byte) {
i.p = 0
if len(src) == 0 {
i.setDone()
i.rb.nsrc = 0
return
}
i.multiSeg = nil
i.rb.init(f, src)
i.next = i.rb.f.nextMain
i.asciiF = nextASCIIBytes
i.info = i.rb.f.info(i.rb.src, i.p)
}
// InitString initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) InitString(f Form, src string) {
i.p = 0
if len(src) == 0 {
i.setDone()
i.rb.nsrc = 0
return
}
i.multiSeg = nil
i.rb.initString(f, src)
i.next = i.rb.f.nextMain
i.asciiF = nextASCIIString
i.info = i.rb.f.info(i.rb.src, i.p)
}
// Seek sets the segment to be returned by the next call to Next to start
// at position p. It is the responsibility of the caller to set p to the
// start of a UTF8 rune.
func (i *Iter) Seek(offset int64, whence int) (int64, error) {
var abs int64
switch whence {
case 0:
abs = offset
case 1:
abs = int64(i.p) + offset
case 2:
abs = int64(i.rb.nsrc) + offset
default:
return 0, fmt.Errorf("norm: invalid whence")
}
if abs < 0 {
return 0, fmt.Errorf("norm: negative position")
}
if int(abs) >= i.rb.nsrc {
i.setDone()
return int64(i.p), nil
}
i.p = int(abs)
i.multiSeg = nil
i.next = i.rb.f.nextMain
i.info = i.rb.f.info(i.rb.src, i.p)
return abs, nil
}
// returnSlice returns a slice of the underlying input type as a byte slice.
// If the underlying is of type []byte, it will simply return a slice.
// If the underlying is of type string, it will copy the slice to the buffer
// and return that.
func (i *Iter) returnSlice(a, b int) []byte {
if i.rb.src.bytes == nil {
return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
}
return i.rb.src.bytes[a:b]
}
// Pos returns the byte position at which the next call to Next will commence processing.
func (i *Iter) Pos() int {
return i.p
}
func (i *Iter) setDone() {
i.next = nextDone
i.p = i.rb.nsrc
}
// Done returns true if there is no more input to process.
func (i *Iter) Done() bool {
return i.p >= i.rb.nsrc
}
// Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
// For any input a and b for which f(a) == f(b), subsequent calls
// to Next will return the same segments.
// Modifying runes are grouped together with the preceding starter, if such a starter exists.
// Although not guaranteed, n will typically be the smallest possible n.
func (i *Iter) Next() []byte {
return i.next(i)
}
func nextASCIIBytes(i *Iter) []byte {
p := i.p + 1
if p >= i.rb.nsrc {
i.setDone()
return i.rb.src.bytes[i.p:p]
}
if i.rb.src.bytes[p] < utf8.RuneSelf {
p0 := i.p
i.p = p
return i.rb.src.bytes[p0:p]
}
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
func nextASCIIString(i *Iter) []byte {
p := i.p + 1
if p >= i.rb.nsrc {
i.buf[0] = i.rb.src.str[i.p]
i.setDone()
return i.buf[:1]
}
if i.rb.src.str[p] < utf8.RuneSelf {
i.buf[0] = i.rb.src.str[i.p]
i.p = p
return i.buf[:1]
}
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
func nextHangul(i *Iter) []byte {
p := i.p
next := p + hangulUTF8Size
if next >= i.rb.nsrc {
i.setDone()
} else if i.rb.src.hangul(next) == 0 {
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
i.p = next
return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
}
func nextDone(i *Iter) []byte {
return nil
}
// nextMulti is used for iterating over multi-segment decompositions
// for decomposing normal forms.
func nextMulti(i *Iter) []byte {
j := 0
d := i.multiSeg
// skip first rune
for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
}
for j < len(d) {
info := i.rb.f.info(input{bytes: d}, j)
if info.BoundaryBefore() {
i.multiSeg = d[j:]
return d[:j]
}
j += int(info.size)
}
// treat last segment as normal decomposition
i.next = i.rb.f.nextMain
return i.next(i)
}
// nextMultiNorm is used for iterating over multi-segment decompositions
// for composing normal forms.
func nextMultiNorm(i *Iter) []byte {
j := 0
d := i.multiSeg
for j < len(d) {
info := i.rb.f.info(input{bytes: d}, j)
if info.BoundaryBefore() {
i.rb.compose()
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
i.rb.ss.first(info)
i.rb.insertUnsafe(input{bytes: d}, j, info)
i.multiSeg = d[j+int(info.size):]
return seg
}
i.rb.ss.next(info)
i.rb.insertUnsafe(input{bytes: d}, j, info)
j += int(info.size)
}
i.multiSeg = nil
i.next = nextComposed
return doNormComposed(i)
}
// nextDecomposed is the implementation of Next for forms NFD and NFKD.
func nextDecomposed(i *Iter) (next []byte) {
outp := 0
inCopyStart, outCopyStart := i.p, 0
ss := mkStreamSafe(i.info)
for {
if sz := int(i.info.size); sz <= 1 {
p := i.p
i.p++ // ASCII or illegal byte. Either way, advance by 1.
if i.p >= i.rb.nsrc {
i.setDone()
return i.returnSlice(p, i.p)
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
i.next = i.asciiF
return i.returnSlice(p, i.p)
}
outp++
} else if d := i.info.Decomposition(); d != nil {
// Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
// Case 1: there is a leftover to copy. In this case the decomposition
// must begin with a modifier and should always be appended.
// Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
p := outp + len(d)
if outp > 0 {
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
if p > len(i.buf) {
return i.buf[:outp]
}
} else if i.info.multiSegment() {
// outp must be 0 as multi-segment decompositions always
// start a new segment.
if i.multiSeg == nil {
i.multiSeg = d
i.next = nextMulti
return nextMulti(i)
}
// We are in the last segment. Treat as normal decomposition.
d = i.multiSeg
i.multiSeg = nil
p = len(d)
}
prevCC := i.info.tccc
if i.p += sz; i.p >= i.rb.nsrc {
i.setDone()
i.info = Properties{} // Force BoundaryBefore to succeed.
} else {
i.info = i.rb.f.info(i.rb.src, i.p)
}
switch ss.next(i.info) {
case ssOverflow:
i.next = nextCGJDecompose
fallthrough
case ssStarter:
if outp > 0 {
copy(i.buf[outp:], d)
return i.buf[:p]
}
return d
}
copy(i.buf[outp:], d)
outp = p
inCopyStart, outCopyStart = i.p, outp
if i.info.ccc < prevCC {
goto doNorm
}
continue
} else if r := i.rb.src.hangul(i.p); r != 0 {
outp = decomposeHangul(i.buf[:], r)
i.p += hangulUTF8Size
inCopyStart, outCopyStart = i.p, outp
if i.p >= i.rb.nsrc {
i.setDone()
break
} else if i.rb.src.hangul(i.p) != 0 {
i.next = nextHangul
return i.buf[:outp]
}
} else {
p := outp + sz
if p > len(i.buf) {
break
}
outp = p
i.p += sz
}
if i.p >= i.rb.nsrc {
i.setDone()
break
}
prevCC := i.info.tccc
i.info = i.rb.f.info(i.rb.src, i.p)
if v := ss.next(i.info); v == ssStarter {
break
} else if v == ssOverflow {
i.next = nextCGJDecompose
break
}
if i.info.ccc < prevCC {
goto doNorm
}
}
if outCopyStart == 0 {
return i.returnSlice(inCopyStart, i.p)
} else if inCopyStart < i.p {
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
}
return i.buf[:outp]
doNorm:
// Insert what we have decomposed so far in the reorderBuffer.
// As we will only reorder, there will always be enough room.
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
i.rb.insertDecomposed(i.buf[0:outp])
return doNormDecomposed(i)
}
func doNormDecomposed(i *Iter) []byte {
for {
if s := i.rb.ss.next(i.info); s == ssOverflow {
i.next = nextCGJDecompose
break
}
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.setDone()
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.ccc == 0 {
break
}
}
// new segment or too many combining characters: exit normalization
return i.buf[:i.rb.flushCopy(i.buf[:])]
}
func nextCGJDecompose(i *Iter) []byte {
i.rb.ss = 0
i.rb.insertCGJ()
i.next = nextDecomposed
buf := doNormDecomposed(i)
return buf
}
// nextComposed is the implementation of Next for forms NFC and NFKC.
func nextComposed(i *Iter) []byte {
outp, startp := 0, i.p
var prevCC uint8
ss := mkStreamSafe(i.info)
for {
if !i.info.isYesC() {
goto doNorm
}
prevCC = i.info.tccc
sz := int(i.info.size)
if sz == 0 {
sz = 1 // illegal rune: copy byte-by-byte
}
p := outp + sz
if p > len(i.buf) {
break
}
outp = p
i.p += sz
if i.p >= i.rb.nsrc {
i.setDone()
break
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
i.next = i.asciiF
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if v := ss.next(i.info); v == ssStarter {
break
} else if v == ssOverflow {
i.next = nextCGJCompose
break
}
if i.info.ccc < prevCC {
goto doNorm
}
}
return i.returnSlice(startp, i.p)
doNorm:
i.p = startp
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.multiSegment() {
d := i.info.Decomposition()
info := i.rb.f.info(input{bytes: d}, 0)
i.rb.insertUnsafe(input{bytes: d}, 0, info)
i.multiSeg = d[int(info.size):]
i.next = nextMultiNorm
return nextMultiNorm(i)
}
i.rb.ss.first(i.info)
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
return doNormComposed(i)
}
func doNormComposed(i *Iter) []byte {
// First rune should already be inserted.
for {
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.setDone()
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if s := i.rb.ss.next(i.info); s == ssStarter {
break
} else if s == ssOverflow {
i.next = nextCGJCompose
break
}
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
}
i.rb.compose()
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
return seg
}
func nextCGJCompose(i *Iter) []byte {
i.rb.ss = 0 // instead of first
i.rb.insertCGJ()
i.next = nextComposed
// Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
// even if they are not. This is particularly dubious for U+FF9E and UFF9A.
// If we ever change that, insert a check here.
i.rb.ss.first(i.info)
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
return doNormComposed(i)
}

View File

@@ -0,0 +1,98 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"strings"
"testing"
)
func doIterNorm(f Form, s string) []byte {
acc := []byte{}
i := Iter{}
i.InitString(f, s)
for !i.Done() {
acc = append(acc, i.Next()...)
}
return acc
}
func TestIterNext(t *testing.T) {
runNormTests(t, "IterNext", func(f Form, out []byte, s string) []byte {
return doIterNorm(f, string(append(out, s...)))
})
}
type SegmentTest struct {
in string
out []string
}
var segmentTests = []SegmentTest{
{"\u1E0A\u0323a", []string{"\x44\u0323\u0307", "a", ""}},
{rep('a', segSize), append(strings.Split(rep('a', segSize), ""), "")},
{rep('a', segSize+2), append(strings.Split(rep('a', segSize+2), ""), "")},
{rep('a', segSize) + "\u0300aa",
append(strings.Split(rep('a', segSize-1), ""), "a\u0300", "a", "a", "")},
// U+0f73 is NOT treated as a starter as it is a modifier
{"a" + grave(29) + "\u0f73", []string{"a" + grave(29), cgj + "\u0f73"}},
{"a\u0f73", []string{"a\u0f73"}},
// U+ff9e is treated as a non-starter.
// TODO: should we? Note that this will only affect iteration, as whether
// or not we do so does not affect the normalization output and will either
// way result in consistent iteration output.
{"a" + grave(30) + "\uff9e", []string{"a" + grave(30), cgj + "\uff9e"}},
{"a\uff9e", []string{"a\uff9e"}},
}
var segmentTestsK = []SegmentTest{
{"\u3332", []string{"\u30D5", "\u30A1", "\u30E9", "\u30C3", "\u30C8\u3099", ""}},
// last segment of multi-segment decomposition needs normalization
{"\u3332\u093C", []string{"\u30D5", "\u30A1", "\u30E9", "\u30C3", "\u30C8\u093C\u3099", ""}},
{"\u320E", []string{"\x28", "\uAC00", "\x29"}},
// last segment should be copied to start of buffer.
{"\ufdfa", []string{"\u0635", "\u0644", "\u0649", " ", "\u0627", "\u0644", "\u0644", "\u0647", " ", "\u0639", "\u0644", "\u064a", "\u0647", " ", "\u0648", "\u0633", "\u0644", "\u0645", ""}},
{"\ufdfa" + grave(30), []string{"\u0635", "\u0644", "\u0649", " ", "\u0627", "\u0644", "\u0644", "\u0647", " ", "\u0639", "\u0644", "\u064a", "\u0647", " ", "\u0648", "\u0633", "\u0644", "\u0645" + grave(30), ""}},
{"\uFDFA" + grave(64), []string{"\u0635", "\u0644", "\u0649", " ", "\u0627", "\u0644", "\u0644", "\u0647", " ", "\u0639", "\u0644", "\u064a", "\u0647", " ", "\u0648", "\u0633", "\u0644", "\u0645" + grave(30), cgj + grave(30), cgj + grave(4), ""}},
// Hangul and Jamo are grouped togeter.
{"\uAC00", []string{"\u1100\u1161", ""}},
{"\uAC01", []string{"\u1100\u1161\u11A8", ""}},
{"\u1100\u1161", []string{"\u1100\u1161", ""}},
}
// Note that, by design, segmentation is equal for composing and decomposing forms.
func TestIterSegmentation(t *testing.T) {
segmentTest(t, "SegmentTestD", NFD, segmentTests)
segmentTest(t, "SegmentTestC", NFC, segmentTests)
segmentTest(t, "SegmentTestKD", NFKD, segmentTestsK)
segmentTest(t, "SegmentTestKC", NFKC, segmentTestsK)
}
func segmentTest(t *testing.T, name string, f Form, tests []SegmentTest) {
iter := Iter{}
for i, tt := range tests {
iter.InitString(f, tt.in)
for j, seg := range tt.out {
if seg == "" {
if !iter.Done() {
res := string(iter.Next())
t.Errorf(`%s:%d:%d: expected Done()==true, found segment %+q`, name, i, j, res)
}
continue
}
if iter.Done() {
t.Errorf("%s:%d:%d: Done()==true, want false", name, i, j)
}
seg = f.String(seg)
if res := string(iter.Next()); res != seg {
t.Errorf(`%s:%d:%d" segment was %+q (%d); want %+q (%d)`, name, i, j, pc(res), len(res), pc(seg), len(seg))
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,45 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Generate test data for trie code.
package main
import (
"fmt"
)
func main() {
printTestTables()
}
// We take the smallest, largest and an arbitrary value for each
// of the UTF-8 sequence lengths.
var testRunes = []rune{
0x01, 0x0C, 0x7F, // 1-byte sequences
0x80, 0x100, 0x7FF, // 2-byte sequences
0x800, 0x999, 0xFFFF, // 3-byte sequences
0x10000, 0x10101, 0x10FFFF, // 4-byte sequences
0x200, 0x201, 0x202, 0x210, 0x215, // five entries in one sparse block
}
const fileHeader = `// Generated by running
// maketesttables
// DO NOT EDIT
package norm
`
func printTestTables() {
fmt.Print(fileHeader)
fmt.Printf("var testRunes = %#v\n\n", testRunes)
t := newNode()
for i, r := range testRunes {
t.insert(r, uint16(i))
}
t.printTables("testdata")
}

View File

@@ -0,0 +1,14 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm_test
import (
"testing"
)
func TestPlaceHolder(t *testing.T) {
// Does nothing, just allows the Makefile to be canonical
// while waiting for the package itself to be written.
}

View File

@@ -0,0 +1,524 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package norm contains types and functions for normalizing Unicode strings.
package norm
import "unicode/utf8"
// A Form denotes a canonical representation of Unicode code points.
// The Unicode-defined normalization and equivalence forms are:
//
// NFC Unicode Normalization Form C
// NFD Unicode Normalization Form D
// NFKC Unicode Normalization Form KC
// NFKD Unicode Normalization Form KD
//
// For a Form f, this documentation uses the notation f(x) to mean
// the bytes or string x converted to the given form.
// A position n in x is called a boundary if conversion to the form can
// proceed independently on both sides:
// f(x) == append(f(x[0:n]), f(x[n:])...)
//
// References: http://unicode.org/reports/tr15/ and
// http://unicode.org/notes/tn5/.
type Form int
const (
NFC Form = iota
NFD
NFKC
NFKD
)
// Bytes returns f(b). May return b if f(b) = b.
func (f Form) Bytes(b []byte) []byte {
src := inputBytes(b)
ft := formTable[f]
n, ok := ft.quickSpan(src, 0, len(b), true)
if ok {
return b
}
out := make([]byte, n, len(b))
copy(out, b[0:n])
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b), out: out, flushF: appendFlush}
return doAppendInner(&rb, n)
}
// String returns f(s).
func (f Form) String(s string) string {
src := inputString(s)
ft := formTable[f]
n, ok := ft.quickSpan(src, 0, len(s), true)
if ok {
return s
}
out := make([]byte, n, len(s))
copy(out, s[0:n])
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s), out: out, flushF: appendFlush}
return string(doAppendInner(&rb, n))
}
// IsNormal returns true if b == f(b).
func (f Form) IsNormal(b []byte) bool {
src := inputBytes(b)
ft := formTable[f]
bp, ok := ft.quickSpan(src, 0, len(b), true)
if ok {
return true
}
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b)}
rb.setFlusher(nil, cmpNormalBytes)
for bp < len(b) {
rb.out = b[bp:]
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
return false
}
bp, _ = rb.f.quickSpan(rb.src, bp, len(b), true)
}
return true
}
func cmpNormalBytes(rb *reorderBuffer) bool {
b := rb.out
for i := 0; i < rb.nrune; i++ {
info := rb.rune[i]
if int(info.size) > len(b) {
return false
}
p := info.pos
pe := p + info.size
for ; p < pe; p++ {
if b[0] != rb.byte[p] {
return false
}
b = b[1:]
}
}
return true
}
// IsNormalString returns true if s == f(s).
func (f Form) IsNormalString(s string) bool {
src := inputString(s)
ft := formTable[f]
bp, ok := ft.quickSpan(src, 0, len(s), true)
if ok {
return true
}
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s)}
rb.setFlusher(nil, func(rb *reorderBuffer) bool {
for i := 0; i < rb.nrune; i++ {
info := rb.rune[i]
if bp+int(info.size) > len(s) {
return false
}
p := info.pos
pe := p + info.size
for ; p < pe; p++ {
if s[bp] != rb.byte[p] {
return false
}
bp++
}
}
return true
})
for bp < len(s) {
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
return false
}
bp, _ = rb.f.quickSpan(rb.src, bp, len(s), true)
}
return true
}
// patchTail fixes a case where a rune may be incorrectly normalized
// if it is followed by illegal continuation bytes. It returns the
// patched buffer and whether the decomposition is still in progress.
func patchTail(rb *reorderBuffer) bool {
info, p := lastRuneStart(&rb.f, rb.out)
if p == -1 || info.size == 0 {
return true
}
end := p + int(info.size)
extra := len(rb.out) - end
if extra > 0 {
// Potentially allocating memory. However, this only
// happens with ill-formed UTF-8.
x := make([]byte, 0)
x = append(x, rb.out[len(rb.out)-extra:]...)
rb.out = rb.out[:end]
decomposeToLastBoundary(rb)
rb.doFlush()
rb.out = append(rb.out, x...)
return false
}
buf := rb.out[p:]
rb.out = rb.out[:p]
decomposeToLastBoundary(rb)
if s := rb.ss.next(info); s == ssStarter {
rb.doFlush()
rb.ss.first(info)
} else if s == ssOverflow {
rb.doFlush()
rb.insertCGJ()
rb.ss = 0
}
rb.insertUnsafe(inputBytes(buf), 0, info)
return true
}
func appendQuick(rb *reorderBuffer, i int) int {
if rb.nsrc == i {
return i
}
end, _ := rb.f.quickSpan(rb.src, i, rb.nsrc, true)
rb.out = rb.src.appendSlice(rb.out, i, end)
return end
}
// Append returns f(append(out, b...)).
// The buffer out must be nil, empty, or equal to f(out).
func (f Form) Append(out []byte, src ...byte) []byte {
return f.doAppend(out, inputBytes(src), len(src))
}
func (f Form) doAppend(out []byte, src input, n int) []byte {
if n == 0 {
return out
}
ft := formTable[f]
// Attempt to do a quickSpan first so we can avoid initializing the reorderBuffer.
if len(out) == 0 {
p, _ := ft.quickSpan(src, 0, n, true)
out = src.appendSlice(out, 0, p)
if p == n {
return out
}
rb := reorderBuffer{f: *ft, src: src, nsrc: n, out: out, flushF: appendFlush}
return doAppendInner(&rb, p)
}
rb := reorderBuffer{f: *ft, src: src, nsrc: n}
return doAppend(&rb, out, 0)
}
func doAppend(rb *reorderBuffer, out []byte, p int) []byte {
rb.setFlusher(out, appendFlush)
src, n := rb.src, rb.nsrc
doMerge := len(out) > 0
if q := src.skipContinuationBytes(p); q > p {
// Move leading non-starters to destination.
rb.out = src.appendSlice(rb.out, p, q)
p = q
doMerge = patchTail(rb)
}
fd := &rb.f
if doMerge {
var info Properties
if p < n {
info = fd.info(src, p)
if !info.BoundaryBefore() || info.nLeadingNonStarters() > 0 {
if p == 0 {
decomposeToLastBoundary(rb)
}
p = decomposeSegment(rb, p, true)
}
}
if info.size == 0 {
rb.doFlush()
// Append incomplete UTF-8 encoding.
return src.appendSlice(rb.out, p, n)
}
if rb.nrune > 0 {
return doAppendInner(rb, p)
}
}
p = appendQuick(rb, p)
return doAppendInner(rb, p)
}
func doAppendInner(rb *reorderBuffer, p int) []byte {
for n := rb.nsrc; p < n; {
p = decomposeSegment(rb, p, true)
p = appendQuick(rb, p)
}
return rb.out
}
// AppendString returns f(append(out, []byte(s))).
// The buffer out must be nil, empty, or equal to f(out).
func (f Form) AppendString(out []byte, src string) []byte {
return f.doAppend(out, inputString(src), len(src))
}
// QuickSpan returns a boundary n such that b[0:n] == f(b[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpan(b []byte) int {
n, _ := formTable[f].quickSpan(inputBytes(b), 0, len(b), true)
return n
}
// quickSpan returns a boundary n such that src[0:n] == f(src[0:n]) and
// whether any non-normalized parts were found. If atEOF is false, n will
// not point past the last segment if this segment might be become
// non-normalized by appending other runes.
func (f *formInfo) quickSpan(src input, i, end int, atEOF bool) (n int, ok bool) {
var lastCC uint8
ss := streamSafe(0)
lastSegStart := i
for n = end; i < n; {
if j := src.skipASCII(i, n); i != j {
i = j
lastSegStart = i - 1
lastCC = 0
ss = 0
continue
}
info := f.info(src, i)
if info.size == 0 {
if atEOF {
// include incomplete runes
return n, true
}
return lastSegStart, true
}
// This block needs to be before the next, because it is possible to
// have an overflow for runes that are starters (e.g. with U+FF9E).
switch ss.next(info) {
case ssStarter:
ss.first(info)
lastSegStart = i
case ssOverflow:
return lastSegStart, false
case ssSuccess:
if lastCC > info.ccc {
return lastSegStart, false
}
}
if f.composing {
if !info.isYesC() {
break
}
} else {
if !info.isYesD() {
break
}
}
lastCC = info.ccc
i += int(info.size)
}
if i == n {
if !atEOF {
n = lastSegStart
}
return n, true
}
return lastSegStart, false
}
// QuickSpanString returns a boundary n such that b[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpanString(s string) int {
n, _ := formTable[f].quickSpan(inputString(s), 0, len(s), true)
return n
}
// FirstBoundary returns the position i of the first boundary in b
// or -1 if b contains no boundary.
func (f Form) FirstBoundary(b []byte) int {
return f.firstBoundary(inputBytes(b), len(b))
}
func (f Form) firstBoundary(src input, nsrc int) int {
i := src.skipContinuationBytes(0)
if i >= nsrc {
return -1
}
fd := formTable[f]
ss := streamSafe(0)
// We should call ss.first here, but we can't as the first rune is
// skipped already. This means FirstBoundary can't really determine
// CGJ insertion points correctly. Luckily it doesn't have to.
// TODO: consider adding NextBoundary
for {
info := fd.info(src, i)
if info.size == 0 {
return -1
}
if s := ss.next(info); s != ssSuccess {
return i
}
i += int(info.size)
if i >= nsrc {
if !info.BoundaryAfter() && !ss.isMax() {
return -1
}
return nsrc
}
}
}
// FirstBoundaryInString returns the position i of the first boundary in s
// or -1 if s contains no boundary.
func (f Form) FirstBoundaryInString(s string) int {
return f.firstBoundary(inputString(s), len(s))
}
// LastBoundary returns the position i of the last boundary in b
// or -1 if b contains no boundary.
func (f Form) LastBoundary(b []byte) int {
return lastBoundary(formTable[f], b)
}
func lastBoundary(fd *formInfo, b []byte) int {
i := len(b)
info, p := lastRuneStart(fd, b)
if p == -1 {
return -1
}
if info.size == 0 { // ends with incomplete rune
if p == 0 { // starts with incomplete rune
return -1
}
i = p
info, p = lastRuneStart(fd, b[:i])
if p == -1 { // incomplete UTF-8 encoding or non-starter bytes without a starter
return i
}
}
if p+int(info.size) != i { // trailing non-starter bytes: illegal UTF-8
return i
}
if info.BoundaryAfter() {
return i
}
ss := streamSafe(0)
v := ss.backwards(info)
for i = p; i >= 0 && v != ssStarter; i = p {
info, p = lastRuneStart(fd, b[:i])
if v = ss.backwards(info); v == ssOverflow {
break
}
if p+int(info.size) != i {
if p == -1 { // no boundary found
return -1
}
return i // boundary after an illegal UTF-8 encoding
}
}
return i
}
// decomposeSegment scans the first segment in src into rb. It inserts 0x034f
// (Grapheme Joiner) when it encounters a sequence of more than 30 non-starters
// and returns the number of bytes consumed from src or iShortDst or iShortSrc.
func decomposeSegment(rb *reorderBuffer, sp int, atEOF bool) int {
// Force one character to be consumed.
info := rb.f.info(rb.src, sp)
if info.size == 0 {
return 0
}
if rb.nrune > 0 {
if s := rb.ss.next(info); s == ssStarter {
goto end
} else if s == ssOverflow {
rb.insertCGJ()
goto end
}
} else {
rb.ss.first(info)
}
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
return int(err)
}
for {
sp += int(info.size)
if sp >= rb.nsrc {
if !atEOF && !info.BoundaryAfter() {
return int(iShortSrc)
}
break
}
info = rb.f.info(rb.src, sp)
if info.size == 0 {
if !atEOF {
return int(iShortSrc)
}
break
}
if s := rb.ss.next(info); s == ssStarter {
break
} else if s == ssOverflow {
rb.insertCGJ()
break
}
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
return int(err)
}
}
end:
if !rb.doFlush() {
return int(iShortDst)
}
return sp
}
// lastRuneStart returns the runeInfo and position of the last
// rune in buf or the zero runeInfo and -1 if no rune was found.
func lastRuneStart(fd *formInfo, buf []byte) (Properties, int) {
p := len(buf) - 1
for ; p >= 0 && !utf8.RuneStart(buf[p]); p-- {
}
if p < 0 {
return Properties{}, -1
}
return fd.info(inputBytes(buf), p), p
}
// decomposeToLastBoundary finds an open segment at the end of the buffer
// and scans it into rb. Returns the buffer minus the last segment.
func decomposeToLastBoundary(rb *reorderBuffer) {
fd := &rb.f
info, i := lastRuneStart(fd, rb.out)
if int(info.size) != len(rb.out)-i {
// illegal trailing continuation bytes
return
}
if info.BoundaryAfter() {
return
}
var add [maxNonStarters + 1]Properties // stores runeInfo in reverse order
padd := 0
ss := streamSafe(0)
p := len(rb.out)
for {
add[padd] = info
v := ss.backwards(info)
if v == ssOverflow {
// Note that if we have an overflow, it the string we are appending to
// is not correctly normalized. In this case the behavior is undefined.
break
}
padd++
p -= int(info.size)
if v == ssStarter || p < 0 {
break
}
info, i = lastRuneStart(fd, rb.out[:p])
if int(info.size) != p-i {
break
}
}
rb.ss = ss
// Copy bytes for insertion as we may need to overwrite rb.out.
var buf [maxBufferSize * utf8.UTFMax]byte
cp := buf[:copy(buf[:], rb.out[p:])]
rb.out = rb.out[:p]
for padd--; padd >= 0; padd-- {
info = add[padd]
rb.insertUnsafe(inputBytes(cp), 0, info)
cp = cp[info.size:]
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,318 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
import (
"bufio"
"bytes"
"flag"
"fmt"
"log"
"net/http"
"os"
"path"
"regexp"
"runtime"
"strconv"
"strings"
"time"
"unicode"
"unicode/utf8"
"code.google.com/p/go.text/unicode/norm"
)
func main() {
flag.Parse()
loadTestData()
CharacterByCharacterTests()
StandardTests()
PerformanceTest()
if errorCount == 0 {
fmt.Println("PASS")
}
}
const file = "NormalizationTest.txt"
var url = flag.String("url",
"http://www.unicode.org/Public/"+unicode.Version+"/ucd/"+file,
"URL of Unicode database directory")
var localFiles = flag.Bool("local",
false,
"data files have been copied to the current directory; for debugging only")
var logger = log.New(os.Stderr, "", log.Lshortfile)
// This regression test runs the test set in NormalizationTest.txt
// (taken from http://www.unicode.org/Public/<unicode.Version>/ucd/).
//
// NormalizationTest.txt has form:
// @Part0 # Specific cases
// #
// 1E0A;1E0A;0044 0307;1E0A;0044 0307; # (Ḋ; Ḋ; D◌̇; Ḋ; D◌̇; ) LATIN CAPITAL LETTER D WITH DOT ABOVE
// 1E0C;1E0C;0044 0323;1E0C;0044 0323; # (Ḍ; Ḍ; D◌̣; Ḍ; D◌̣; ) LATIN CAPITAL LETTER D WITH DOT BELOW
//
// Each test has 5 columns (c1, c2, c3, c4, c5), where
// (c1, c2, c3, c4, c5) == (c1, NFC(c1), NFD(c1), NFKC(c1), NFKD(c1))
//
// CONFORMANCE:
// 1. The following invariants must be true for all conformant implementations
//
// NFC
// c2 == NFC(c1) == NFC(c2) == NFC(c3)
// c4 == NFC(c4) == NFC(c5)
//
// NFD
// c3 == NFD(c1) == NFD(c2) == NFD(c3)
// c5 == NFD(c4) == NFD(c5)
//
// NFKC
// c4 == NFKC(c1) == NFKC(c2) == NFKC(c3) == NFKC(c4) == NFKC(c5)
//
// NFKD
// c5 == NFKD(c1) == NFKD(c2) == NFKD(c3) == NFKD(c4) == NFKD(c5)
//
// 2. For every code point X assigned in this version of Unicode that is not
// specifically listed in Part 1, the following invariants must be true
// for all conformant implementations:
//
// X == NFC(X) == NFD(X) == NFKC(X) == NFKD(X)
//
// Column types.
const (
cRaw = iota
cNFC
cNFD
cNFKC
cNFKD
cMaxColumns
)
// Holds data from NormalizationTest.txt
var part []Part
type Part struct {
name string
number int
tests []Test
}
type Test struct {
name string
partnr int
number int
r rune // used for character by character test
cols [cMaxColumns]string // Each has 5 entries, see below.
}
func (t Test) Name() string {
if t.number < 0 {
return part[t.partnr].name
}
return fmt.Sprintf("%s:%d", part[t.partnr].name, t.number)
}
var partRe = regexp.MustCompile(`@Part(\d) # (.*)$`)
var testRe = regexp.MustCompile(`^` + strings.Repeat(`([\dA-F ]+);`, 5) + ` # (.*)$`)
var counter int
// Load the data form NormalizationTest.txt
func loadTestData() {
if *localFiles {
pwd, _ := os.Getwd()
*url = "file://" + path.Join(pwd, file)
}
t := &http.Transport{}
t.RegisterProtocol("file", http.NewFileTransport(http.Dir("/")))
c := &http.Client{Transport: t}
resp, err := c.Get(*url)
if err != nil {
logger.Fatal(err)
}
if resp.StatusCode != 200 {
logger.Fatal("bad GET status for "+file, resp.Status)
}
f := resp.Body
defer f.Close()
scanner := bufio.NewScanner(f)
for scanner.Scan() {
line := scanner.Text()
if len(line) == 0 || line[0] == '#' {
continue
}
m := partRe.FindStringSubmatch(line)
if m != nil {
if len(m) < 3 {
logger.Fatal("Failed to parse Part: ", line)
}
i, err := strconv.Atoi(m[1])
if err != nil {
logger.Fatal(err)
}
name := m[2]
part = append(part, Part{name: name[:len(name)-1], number: i})
continue
}
m = testRe.FindStringSubmatch(line)
if m == nil || len(m) < 7 {
logger.Fatalf(`Failed to parse: "%s" result: %#v`, line, m)
}
test := Test{name: m[6], partnr: len(part) - 1, number: counter}
counter++
for j := 1; j < len(m)-1; j++ {
for _, split := range strings.Split(m[j], " ") {
r, err := strconv.ParseUint(split, 16, 64)
if err != nil {
logger.Fatal(err)
}
if test.r == 0 {
// save for CharacterByCharacterTests
test.r = rune(r)
}
var buf [utf8.UTFMax]byte
sz := utf8.EncodeRune(buf[:], rune(r))
test.cols[j-1] += string(buf[:sz])
}
}
part := &part[len(part)-1]
part.tests = append(part.tests, test)
}
if scanner.Err() != nil {
logger.Fatal(scanner.Err())
}
}
var fstr = []string{"NFC", "NFD", "NFKC", "NFKD"}
var errorCount int
func cmpResult(t *Test, name string, f norm.Form, gold, test, result string) {
if gold != result {
errorCount++
if errorCount > 20 {
return
}
logger.Printf("%s:%s: %s(%+q)=%+q; want %+q: %s",
t.Name(), name, fstr[f], test, result, gold, t.name)
}
}
func cmpIsNormal(t *Test, name string, f norm.Form, test string, result, want bool) {
if result != want {
errorCount++
if errorCount > 20 {
return
}
logger.Printf("%s:%s: %s(%+q)=%v; want %v", t.Name(), name, fstr[f], test, result, want)
}
}
func doTest(t *Test, f norm.Form, gold, test string) {
testb := []byte(test)
result := f.Bytes(testb)
cmpResult(t, "Bytes", f, gold, test, string(result))
sresult := f.String(test)
cmpResult(t, "String", f, gold, test, sresult)
acc := []byte{}
i := norm.Iter{}
i.InitString(f, test)
for !i.Done() {
acc = append(acc, i.Next()...)
}
cmpResult(t, "Iter.Next", f, gold, test, string(acc))
buf := make([]byte, 128)
acc = nil
for p := 0; p < len(testb); {
nDst, nSrc, _ := f.Transform(buf, testb[p:], true)
acc = append(acc, buf[:nDst]...)
p += nSrc
}
cmpResult(t, "Transform", f, gold, test, string(acc))
for i := range test {
out := f.Append(f.Bytes([]byte(test[:i])), []byte(test[i:])...)
cmpResult(t, fmt.Sprintf(":Append:%d", i), f, gold, test, string(out))
}
cmpIsNormal(t, "IsNormal", f, test, f.IsNormal([]byte(test)), test == gold)
cmpIsNormal(t, "IsNormalString", f, test, f.IsNormalString(test), test == gold)
}
func doConformanceTests(t *Test, partn int) {
for i := 0; i <= 2; i++ {
doTest(t, norm.NFC, t.cols[1], t.cols[i])
doTest(t, norm.NFD, t.cols[2], t.cols[i])
doTest(t, norm.NFKC, t.cols[3], t.cols[i])
doTest(t, norm.NFKD, t.cols[4], t.cols[i])
}
for i := 3; i <= 4; i++ {
doTest(t, norm.NFC, t.cols[3], t.cols[i])
doTest(t, norm.NFD, t.cols[4], t.cols[i])
doTest(t, norm.NFKC, t.cols[3], t.cols[i])
doTest(t, norm.NFKD, t.cols[4], t.cols[i])
}
}
func CharacterByCharacterTests() {
tests := part[1].tests
var last rune = 0
for i := 0; i <= len(tests); i++ { // last one is special case
var r rune
if i == len(tests) {
r = 0x2FA1E // Don't have to go to 0x10FFFF
} else {
r = tests[i].r
}
for last++; last < r; last++ {
// Check all characters that were not explicitly listed in the test.
t := &Test{partnr: 1, number: -1}
char := string(last)
doTest(t, norm.NFC, char, char)
doTest(t, norm.NFD, char, char)
doTest(t, norm.NFKC, char, char)
doTest(t, norm.NFKD, char, char)
}
if i < len(tests) {
doConformanceTests(&tests[i], 1)
}
}
}
func StandardTests() {
for _, j := range []int{0, 2, 3} {
for _, test := range part[j].tests {
doConformanceTests(&test, j)
}
}
}
// PerformanceTest verifies that normalization is O(n). If any of the
// code does not properly check for maxCombiningChars, normalization
// may exhibit O(n**2) behavior.
func PerformanceTest() {
runtime.GOMAXPROCS(2)
success := make(chan bool, 1)
go func() {
buf := bytes.Repeat([]byte("\u035D"), 1024*1024)
buf = append(buf, "\u035B"...)
norm.NFC.Append(nil, buf...)
success <- true
}()
timeout := time.After(1 * time.Second)
select {
case <-success:
// test completed before the timeout
case <-timeout:
errorCount++
logger.Printf(`unexpectedly long time to complete PerformanceTest`)
}
}

View File

@@ -0,0 +1,126 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "io"
type normWriter struct {
rb reorderBuffer
w io.Writer
buf []byte
}
// Write implements the standard write interface. If the last characters are
// not at a normalization boundary, the bytes will be buffered for the next
// write. The remaining bytes will be written on close.
func (w *normWriter) Write(data []byte) (n int, err error) {
// Process data in pieces to keep w.buf size bounded.
const chunk = 4000
for len(data) > 0 {
// Normalize into w.buf.
m := len(data)
if m > chunk {
m = chunk
}
w.rb.src = inputBytes(data[:m])
w.rb.nsrc = m
w.buf = doAppend(&w.rb, w.buf, 0)
data = data[m:]
n += m
// Write out complete prefix, save remainder.
// Note that lastBoundary looks back at most 31 runes.
i := lastBoundary(&w.rb.f, w.buf)
if i == -1 {
i = 0
}
if i > 0 {
if _, err = w.w.Write(w.buf[:i]); err != nil {
break
}
bn := copy(w.buf, w.buf[i:])
w.buf = w.buf[:bn]
}
}
return n, err
}
// Close forces data that remains in the buffer to be written.
func (w *normWriter) Close() error {
if len(w.buf) > 0 {
_, err := w.w.Write(w.buf)
if err != nil {
return err
}
}
return nil
}
// Writer returns a new writer that implements Write(b)
// by writing f(b) to w. The returned writer may use an
// an internal buffer to maintain state across Write calls.
// Calling its Close method writes any buffered data to w.
func (f Form) Writer(w io.Writer) io.WriteCloser {
wr := &normWriter{rb: reorderBuffer{}, w: w}
wr.rb.init(f, nil)
return wr
}
type normReader struct {
rb reorderBuffer
r io.Reader
inbuf []byte
outbuf []byte
bufStart int
lastBoundary int
err error
}
// Read implements the standard read interface.
func (r *normReader) Read(p []byte) (int, error) {
for {
if r.lastBoundary-r.bufStart > 0 {
n := copy(p, r.outbuf[r.bufStart:r.lastBoundary])
r.bufStart += n
if r.lastBoundary-r.bufStart > 0 {
return n, nil
}
return n, r.err
}
if r.err != nil {
return 0, r.err
}
outn := copy(r.outbuf, r.outbuf[r.lastBoundary:])
r.outbuf = r.outbuf[0:outn]
r.bufStart = 0
n, err := r.r.Read(r.inbuf)
r.rb.src = inputBytes(r.inbuf[0:n])
r.rb.nsrc, r.err = n, err
if n > 0 {
r.outbuf = doAppend(&r.rb, r.outbuf, 0)
}
if err == io.EOF {
r.lastBoundary = len(r.outbuf)
} else {
r.lastBoundary = lastBoundary(&r.rb.f, r.outbuf)
if r.lastBoundary == -1 {
r.lastBoundary = 0
}
}
}
panic("should not reach here")
}
// Reader returns a new reader that implements Read
// by reading data from r and returning f(data).
func (f Form) Reader(r io.Reader) io.Reader {
const chunk = 4000
buf := make([]byte, chunk)
rr := &normReader{rb: reorderBuffer{}, r: r, inbuf: buf}
rr.rb.init(f, buf)
return rr
}

View File

@@ -0,0 +1,56 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"bytes"
"fmt"
"testing"
)
var bufSizes = []int{1, 2, 3, 4, 5, 6, 7, 8, 100, 101, 102, 103, 4000, 4001, 4002, 4003}
func readFunc(size int) appendFunc {
return func(f Form, out []byte, s string) []byte {
out = append(out, s...)
r := f.Reader(bytes.NewBuffer(out))
buf := make([]byte, size)
result := []byte{}
for n, err := 0, error(nil); err == nil; {
n, err = r.Read(buf)
result = append(result, buf[:n]...)
}
return result
}
}
func TestReader(t *testing.T) {
for _, s := range bufSizes {
name := fmt.Sprintf("TestReader%d", s)
runNormTests(t, name, readFunc(s))
}
}
func writeFunc(size int) appendFunc {
return func(f Form, out []byte, s string) []byte {
in := append(out, s...)
result := new(bytes.Buffer)
w := f.Writer(result)
buf := make([]byte, size)
for n := 0; len(in) > 0; in = in[n:] {
n = copy(buf, in)
_, _ = w.Write(buf[:n])
}
w.Close()
return result.Bytes()
}
}
func TestWriter(t *testing.T) {
for _, s := range bufSizes {
name := fmt.Sprintf("TestWriter%d", s)
runNormTests(t, name, writeFunc(s))
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,85 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"unicode/utf8"
"code.google.com/p/go.text/transform"
)
// Transform implements the transform.Transformer interface. It may need to
// write segments of up to MaxSegmentSize at once. Users should either catch
// ErrShortDst and allow dst to grow or have dst be at least of size
// MaxTransformChunkSize to be guaranteed of progress.
func (f Form) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := 0
// Cap the maximum number of src bytes to check.
b := src
eof := atEOF
if ns := len(dst); ns < len(b) {
err = transform.ErrShortDst
eof = false
b = b[:ns]
}
i, ok := formTable[f].quickSpan(inputBytes(b), n, len(b), eof)
n += copy(dst[n:], b[n:i])
if !ok {
nDst, nSrc, err = f.transform(dst[n:], src[n:], atEOF)
return nDst + n, nSrc + n, err
}
if n < len(src) && !atEOF {
err = transform.ErrShortSrc
}
return n, n, err
}
func flushTransform(rb *reorderBuffer) bool {
// Write out (must fully fit in dst, or else it is a ErrShortDst).
if len(rb.out) < rb.nrune*utf8.UTFMax {
return false
}
rb.out = rb.out[rb.flushCopy(rb.out):]
return true
}
var errs = []error{nil, transform.ErrShortDst, transform.ErrShortSrc}
// transform implements the transform.Transformer interface. It is only called
// when quickSpan does not pass for a given string.
func (f Form) transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// TODO: get rid of reorderBuffer. See CL 23460044.
rb := reorderBuffer{}
rb.init(f, src)
for {
// Load segment into reorder buffer.
rb.setFlusher(dst[nDst:], flushTransform)
end := decomposeSegment(&rb, nSrc, atEOF)
if end < 0 {
return nDst, nSrc, errs[-end]
}
nDst = len(dst) - len(rb.out)
nSrc = end
// Next quickSpan.
end = rb.nsrc
eof := atEOF
if n := nSrc + len(dst) - nDst; n < end {
err = transform.ErrShortDst
end = n
eof = false
}
end, ok := rb.f.quickSpan(rb.src, nSrc, end, eof)
n := copy(dst[nDst:], rb.src.bytes[nSrc:end])
nSrc += n
nDst += n
if ok {
if n < rb.nsrc && !atEOF {
err = transform.ErrShortSrc
}
return nDst, nSrc, err
}
}
}

View File

@@ -0,0 +1,101 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"fmt"
"testing"
"code.google.com/p/go.text/transform"
)
func TestTransform(t *testing.T) {
tests := []struct {
f Form
in, out string
eof bool
dstSize int
err error
}{
{NFC, "ab", "ab", true, 2, nil},
{NFC, "qx", "qx", true, 2, nil},
{NFD, "qx", "qx", true, 2, nil},
{NFC, "", "", true, 1, nil},
{NFD, "", "", true, 1, nil},
{NFC, "", "", false, 1, nil},
{NFD, "", "", false, 1, nil},
// Normalized segment does not fit in destination.
{NFD, "ö", "", true, 1, transform.ErrShortDst},
{NFD, "ö", "", true, 2, transform.ErrShortDst},
// As an artifact of the algorithm, only full segments are written.
// This is not strictly required, and some bytes could be written.
// In practice, for Transform to not block, the destination buffer
// should be at least MaxSegmentSize to work anyway and these edge
// conditions will be relatively rare.
{NFC, "ab", "", true, 1, transform.ErrShortDst},
// This is even true for inert runes.
{NFC, "qx", "", true, 1, transform.ErrShortDst},
{NFC, "a\u0300abc", "\u00e0a", true, 4, transform.ErrShortDst},
// We cannot write a segment if succesive runes could still change the result.
{NFD, "ö", "", false, 3, transform.ErrShortSrc},
{NFC, "a\u0300", "", false, 4, transform.ErrShortSrc},
{NFD, "a\u0300", "", false, 4, transform.ErrShortSrc},
{NFC, "ö", "", false, 3, transform.ErrShortSrc},
{NFC, "a\u0300", "", true, 1, transform.ErrShortDst},
// Theoretically could fit, but won't due to simplified checks.
{NFC, "a\u0300", "", true, 2, transform.ErrShortDst},
{NFC, "a\u0300", "", true, 3, transform.ErrShortDst},
{NFC, "a\u0300", "\u00e0", true, 4, nil},
{NFD, "öa\u0300", "o\u0308", false, 8, transform.ErrShortSrc},
{NFD, "öa\u0300ö", "o\u0308a\u0300", true, 8, transform.ErrShortDst},
{NFD, "öa\u0300ö", "o\u0308a\u0300", false, 12, transform.ErrShortSrc},
// Illegal input is copied verbatim.
{NFD, "\xbd\xb2=\xbc ", "\xbd\xb2=\xbc ", true, 8, nil},
}
b := make([]byte, 100)
for i, tt := range tests {
nDst, _, err := tt.f.Transform(b[:tt.dstSize], []byte(tt.in), tt.eof)
out := string(b[:nDst])
if out != tt.out || err != tt.err {
t.Errorf("%d: was %+q (%v); want %+q (%v)", i, out, err, tt.out, tt.err)
}
if want := tt.f.String(tt.in)[:nDst]; want != out {
t.Errorf("%d: incorect normalization: was %+q; want %+q", i, out, want)
}
}
}
var transBufSizes = []int{
MaxTransformChunkSize,
3 * MaxTransformChunkSize / 2,
2 * MaxTransformChunkSize,
3 * MaxTransformChunkSize,
100 * MaxTransformChunkSize,
}
func doTransNorm(f Form, buf []byte, b []byte) []byte {
acc := []byte{}
for p := 0; p < len(b); {
nd, ns, _ := f.Transform(buf[:], b[p:], true)
p += ns
acc = append(acc, buf[:nd]...)
}
return acc
}
func TestTransformNorm(t *testing.T) {
for _, sz := range transBufSizes {
buf := make([]byte, sz)
runNormTests(t, fmt.Sprintf("Transform:%d", sz), func(f Form, out []byte, s string) []byte {
return doTransNorm(f, buf, append(out, s...))
})
}
}

View File

@@ -0,0 +1,232 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
type valueRange struct {
value uint16 // header: value:stride
lo, hi byte // header: lo:n
}
type trie struct {
index []uint8
values []uint16
sparse []valueRange
sparseOffset []uint16
cutoff uint8 // indices >= cutoff are sparse
}
// lookupValue determines the type of block n and looks up the value for b.
// For n < t.cutoff, the block is a simple lookup table. Otherwise, the block
// is a list of ranges with an accompanying value. Given a matching range r,
// the value for b is by r.value + (b - r.lo) * stride.
func (t *trie) lookupValue(n uint8, b byte) uint16 {
if n < t.cutoff {
return t.values[uint16(n)<<6+uint16(b)]
}
offset := t.sparseOffset[n-t.cutoff]
header := t.sparse[offset]
lo := offset + 1
hi := lo + uint16(header.lo)
for lo < hi {
m := lo + (hi-lo)/2
r := t.sparse[m]
if r.lo <= b && b <= r.hi {
return r.value + uint16(b-r.lo)*header.value
}
if b < r.lo {
hi = m
} else {
lo = m + 1
}
}
return 0
}
const (
t1 = 0x00 // 0000 0000
tx = 0x80 // 1000 0000
t2 = 0xC0 // 1100 0000
t3 = 0xE0 // 1110 0000
t4 = 0xF0 // 1111 0000
t5 = 0xF8 // 1111 1000
t6 = 0xFC // 1111 1100
te = 0xFE // 1111 1110
)
// lookup returns the trie value for the first UTF-8 encoding in s and
// the width in bytes of this encoding. The size will be 0 if s does not
// hold enough bytes to complete the encoding. len(s) must be greater than 0.
func (t *trie) lookup(s []byte) (v uint16, sz int) {
c0 := s[0]
switch {
case c0 < tx:
return t.values[c0], 1
case c0 < t2:
return 0, 1
case c0 < t3:
if len(s) < 2 {
return 0, 0
}
i := t.index[c0]
c1 := s[1]
if c1 < tx || t2 <= c1 {
return 0, 1
}
return t.lookupValue(i, c1), 2
case c0 < t4:
if len(s) < 3 {
return 0, 0
}
i := t.index[c0]
c1 := s[1]
if c1 < tx || t2 <= c1 {
return 0, 1
}
o := uint16(i)<<6 + uint16(c1)
i = t.index[o]
c2 := s[2]
if c2 < tx || t2 <= c2 {
return 0, 2
}
return t.lookupValue(i, c2), 3
case c0 < t5:
if len(s) < 4 {
return 0, 0
}
i := t.index[c0]
c1 := s[1]
if c1 < tx || t2 <= c1 {
return 0, 1
}
o := uint16(i)<<6 + uint16(c1)
i = t.index[o]
c2 := s[2]
if c2 < tx || t2 <= c2 {
return 0, 2
}
o = uint16(i)<<6 + uint16(c2)
i = t.index[o]
c3 := s[3]
if c3 < tx || t2 <= c3 {
return 0, 3
}
return t.lookupValue(i, c3), 4
}
// Illegal rune
return 0, 1
}
// lookupString returns the trie value for the first UTF-8 encoding in s and
// the width in bytes of this encoding. The size will be 0 if s does not
// hold enough bytes to complete the encoding. len(s) must be greater than 0.
func (t *trie) lookupString(s string) (v uint16, sz int) {
c0 := s[0]
switch {
case c0 < tx:
return t.values[c0], 1
case c0 < t2:
return 0, 1
case c0 < t3:
if len(s) < 2 {
return 0, 0
}
i := t.index[c0]
c1 := s[1]
if c1 < tx || t2 <= c1 {
return 0, 1
}
return t.lookupValue(i, c1), 2
case c0 < t4:
if len(s) < 3 {
return 0, 0
}
i := t.index[c0]
c1 := s[1]
if c1 < tx || t2 <= c1 {
return 0, 1
}
o := uint16(i)<<6 + uint16(c1)
i = t.index[o]
c2 := s[2]
if c2 < tx || t2 <= c2 {
return 0, 2
}
return t.lookupValue(i, c2), 3
case c0 < t5:
if len(s) < 4 {
return 0, 0
}
i := t.index[c0]
c1 := s[1]
if c1 < tx || t2 <= c1 {
return 0, 1
}
o := uint16(i)<<6 + uint16(c1)
i = t.index[o]
c2 := s[2]
if c2 < tx || t2 <= c2 {
return 0, 2
}
o = uint16(i)<<6 + uint16(c2)
i = t.index[o]
c3 := s[3]
if c3 < tx || t2 <= c3 {
return 0, 3
}
return t.lookupValue(i, c3), 4
}
// Illegal rune
return 0, 1
}
// lookupUnsafe returns the trie value for the first UTF-8 encoding in s.
// s must hold a full encoding.
func (t *trie) lookupUnsafe(s []byte) uint16 {
c0 := s[0]
if c0 < tx {
return t.values[c0]
}
if c0 < t2 {
return 0
}
i := t.index[c0]
if c0 < t3 {
return t.lookupValue(i, s[1])
}
i = t.index[uint16(i)<<6+uint16(s[1])]
if c0 < t4 {
return t.lookupValue(i, s[2])
}
i = t.index[uint16(i)<<6+uint16(s[2])]
if c0 < t5 {
return t.lookupValue(i, s[3])
}
return 0
}
// lookupStringUnsafe returns the trie value for the first UTF-8 encoding in s.
// s must hold a full encoding.
func (t *trie) lookupStringUnsafe(s string) uint16 {
c0 := s[0]
if c0 < tx {
return t.values[c0]
}
if c0 < t2 {
return 0
}
i := t.index[c0]
if c0 < t3 {
return t.lookupValue(i, s[1])
}
i = t.index[uint16(i)<<6+uint16(s[1])]
if c0 < t4 {
return t.lookupValue(i, s[2])
}
i = t.index[uint16(i)<<6+uint16(s[2])]
if c0 < t5 {
return t.lookupValue(i, s[3])
}
return 0
}

View File

@@ -0,0 +1,152 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"testing"
"unicode/utf8"
)
// Test data is located in triedata_test.go; generated by maketesttables.
var testdata = testdataTrie
type rangeTest struct {
block uint8
lookup byte
result uint16
table []valueRange
offsets []uint16
}
var range1Off = []uint16{0, 2}
var range1 = []valueRange{
{0, 1, 0},
{1, 0x80, 0x80},
{0, 2, 0},
{1, 0x80, 0x80},
{9, 0xff, 0xff},
}
var rangeTests = []rangeTest{
{10, 0x80, 1, range1, range1Off},
{10, 0x00, 0, range1, range1Off},
{11, 0x80, 1, range1, range1Off},
{11, 0xff, 9, range1, range1Off},
{11, 0x00, 0, range1, range1Off},
}
func TestLookupSparse(t *testing.T) {
for i, test := range rangeTests {
n := trie{sparse: test.table, sparseOffset: test.offsets, cutoff: 10}
v := n.lookupValue(test.block, test.lookup)
if v != test.result {
t.Errorf("LookupSparse:%d: found %X; want %X", i, v, test.result)
}
}
}
// Test cases for illegal runes.
type trietest struct {
size int
bytes []byte
}
var tests = []trietest{
// illegal runes
{1, []byte{0x80}},
{1, []byte{0xFF}},
{1, []byte{t2, tx - 1}},
{1, []byte{t2, t2}},
{2, []byte{t3, tx, tx - 1}},
{2, []byte{t3, tx, t2}},
{1, []byte{t3, tx - 1, tx}},
{3, []byte{t4, tx, tx, tx - 1}},
{3, []byte{t4, tx, tx, t2}},
{1, []byte{t4, t2, tx, tx - 1}},
{2, []byte{t4, tx, t2, tx - 1}},
// short runes
{0, []byte{t2}},
{0, []byte{t3, tx}},
{0, []byte{t4, tx, tx}},
// we only support UTF-8 up to utf8.UTFMax bytes (4 bytes)
{1, []byte{t5, tx, tx, tx, tx}},
{1, []byte{t6, tx, tx, tx, tx, tx}},
}
func mkUTF8(r rune) ([]byte, int) {
var b [utf8.UTFMax]byte
sz := utf8.EncodeRune(b[:], r)
return b[:sz], sz
}
func TestLookup(t *testing.T) {
for i, tt := range testRunes {
b, szg := mkUTF8(tt)
v, szt := testdata.lookup(b)
if int(v) != i {
t.Errorf("lookup(%U): found value %#x, expected %#x", tt, v, i)
}
if szt != szg {
t.Errorf("lookup(%U): found size %d, expected %d", tt, szt, szg)
}
}
for i, tt := range tests {
v, sz := testdata.lookup(tt.bytes)
if v != 0 {
t.Errorf("lookup of illegal rune, case %d: found value %#x, expected 0", i, v)
}
if sz != tt.size {
t.Errorf("lookup of illegal rune, case %d: found size %d, expected %d", i, sz, tt.size)
}
}
// Verify defaults.
if v, _ := testdata.lookup([]byte{0xC1, 0x8C}); v != 0 {
t.Errorf("lookup of non-existing rune should be 0; found %X", v)
}
}
func TestLookupUnsafe(t *testing.T) {
for i, tt := range testRunes {
b, _ := mkUTF8(tt)
v := testdata.lookupUnsafe(b)
if int(v) != i {
t.Errorf("lookupUnsafe(%U): found value %#x, expected %#x", i, v, i)
}
}
}
func TestLookupString(t *testing.T) {
for i, tt := range testRunes {
b, szg := mkUTF8(tt)
v, szt := testdata.lookupString(string(b))
if int(v) != i {
t.Errorf("lookup(%U): found value %#x, expected %#x", i, v, i)
}
if szt != szg {
t.Errorf("lookup(%U): found size %d, expected %d", i, szt, szg)
}
}
for i, tt := range tests {
v, sz := testdata.lookupString(string(tt.bytes))
if int(v) != 0 {
t.Errorf("lookup of illegal rune, case %d: found value %#x, expected 0", i, v)
}
if sz != tt.size {
t.Errorf("lookup of illegal rune, case %d: found size %d, expected %d", i, sz, tt.size)
}
}
}
func TestLookupStringUnsafe(t *testing.T) {
for i, tt := range testRunes {
b, _ := mkUTF8(tt)
v := testdata.lookupStringUnsafe(string(b))
if int(v) != i {
t.Errorf("lookupUnsafe(%U): found value %#x, expected %#x", i, v, i)
}
}
}

View File

@@ -0,0 +1,85 @@
// Generated by running
// maketesttables
// DO NOT EDIT
package norm
var testRunes = []int32{1, 12, 127, 128, 256, 2047, 2048, 2457, 65535, 65536, 65793, 1114111, 512, 513, 514, 528, 533}
// testdataValues: 192 entries, 384 bytes
// Block 2 is the null block.
var testdataValues = [192]uint16{
// Block 0x0, offset 0x0
0x000c: 0x0001,
// Block 0x1, offset 0x40
0x007f: 0x0002,
// Block 0x2, offset 0x80
}
// testdataSparseOffset: 10 entries, 20 bytes
var testdataSparseOffset = []uint16{0x0, 0x2, 0x4, 0x8, 0xa, 0xc, 0xe, 0x10, 0x12, 0x14}
// testdataSparseValues: 22 entries, 88 bytes
var testdataSparseValues = [22]valueRange{
// Block 0x0, offset 0x1
{value: 0x0000, lo: 0x01},
{value: 0x0003, lo: 0x80, hi: 0x80},
// Block 0x1, offset 0x2
{value: 0x0000, lo: 0x01},
{value: 0x0004, lo: 0x80, hi: 0x80},
// Block 0x2, offset 0x3
{value: 0x0001, lo: 0x03},
{value: 0x000c, lo: 0x80, hi: 0x82},
{value: 0x000f, lo: 0x90, hi: 0x90},
{value: 0x0010, lo: 0x95, hi: 0x95},
// Block 0x3, offset 0x4
{value: 0x0000, lo: 0x01},
{value: 0x0005, lo: 0xbf, hi: 0xbf},
// Block 0x4, offset 0x5
{value: 0x0000, lo: 0x01},
{value: 0x0006, lo: 0x80, hi: 0x80},
// Block 0x5, offset 0x6
{value: 0x0000, lo: 0x01},
{value: 0x0007, lo: 0x99, hi: 0x99},
// Block 0x6, offset 0x7
{value: 0x0000, lo: 0x01},
{value: 0x0008, lo: 0xbf, hi: 0xbf},
// Block 0x7, offset 0x8
{value: 0x0000, lo: 0x01},
{value: 0x0009, lo: 0x80, hi: 0x80},
// Block 0x8, offset 0x9
{value: 0x0000, lo: 0x01},
{value: 0x000a, lo: 0x81, hi: 0x81},
// Block 0x9, offset 0xa
{value: 0x0000, lo: 0x01},
{value: 0x000b, lo: 0xbf, hi: 0xbf},
}
// testdataLookup: 640 bytes
// Block 0 is the null block.
var testdataLookup = [640]uint8{
// Block 0x0, offset 0x0
// Block 0x1, offset 0x40
// Block 0x2, offset 0x80
// Block 0x3, offset 0xc0
0x0c2: 0x01, 0x0c4: 0x02,
0x0c8: 0x03,
0x0df: 0x04,
0x0e0: 0x02,
0x0ef: 0x03,
0x0f0: 0x05, 0x0f4: 0x07,
// Block 0x4, offset 0x100
0x120: 0x05, 0x126: 0x06,
// Block 0x5, offset 0x140
0x17f: 0x07,
// Block 0x6, offset 0x180
0x180: 0x08, 0x184: 0x09,
// Block 0x7, offset 0x1c0
0x1d0: 0x04,
// Block 0x8, offset 0x200
0x23f: 0x0a,
// Block 0x9, offset 0x240
0x24f: 0x06,
}
var testdataTrie = trie{testdataLookup[:], testdataValues[:], testdataSparseValues[:], testdataSparseOffset[:], 1}

View File

@@ -0,0 +1,317 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Trie table generator.
// Used by make*tables tools to generate a go file with trie data structures
// for mapping UTF-8 to a 16-bit value. All but the last byte in a UTF-8 byte
// sequence are used to lookup offsets in the index table to be used for the
// next byte. The last byte is used to index into a table with 16-bit values.
package main
import (
"fmt"
"hash/crc32"
"log"
"unicode/utf8"
)
const (
blockSize = 64
blockOffset = 2 // Subtract two blocks to compensate for the 0x80 added to continuation bytes.
maxSparseEntries = 16
)
// Intermediate trie structure
type trieNode struct {
table [256]*trieNode
value int
b byte
leaf bool
}
func newNode() *trieNode {
return new(trieNode)
}
func (n trieNode) String() string {
s := fmt.Sprint("trieNode{table: { non-nil at index: ")
for i, v := range n.table {
if v != nil {
s += fmt.Sprintf("%d, ", i)
}
}
s += fmt.Sprintf("}, value:%#x, b:%#x leaf:%v}", n.value, n.b, n.leaf)
return s
}
func (n trieNode) isInternal() bool {
internal := true
for i := 0; i < 256; i++ {
if nn := n.table[i]; nn != nil {
if !internal && !nn.leaf {
log.Fatalf("triegen: isInternal: node contains both leaf and non-leaf children (%v)", n)
}
internal = internal && !nn.leaf
}
}
return internal
}
func (n trieNode) mostFrequentStride() int {
counts := make(map[int]int)
v := 0
for _, t := range n.table[0x80 : 0x80+blockSize] {
if t != nil {
if stride := t.value - v; v != 0 && stride >= 0 {
counts[stride]++
}
v = t.value
} else {
v = 0
}
}
var maxs, maxc int
for stride, cnt := range counts {
if cnt > maxc || (cnt == maxc && stride < maxs) {
maxs, maxc = stride, cnt
}
}
return maxs
}
func (n trieNode) countSparseEntries() int {
stride := n.mostFrequentStride()
var count, v int
for _, t := range n.table[0x80 : 0x80+blockSize] {
tv := 0
if t != nil {
tv = t.value
}
if tv-v != stride {
if tv != 0 {
count++
}
}
v = tv
}
return count
}
func (n *trieNode) insert(r rune, value uint16) {
var p [utf8.UTFMax]byte
sz := utf8.EncodeRune(p[:], r)
for i := 0; i < sz; i++ {
if n.leaf {
log.Fatalf("triegen: insert: node (%#v) should not be a leaf", n)
}
nn := n.table[p[i]]
if nn == nil {
nn = newNode()
nn.b = p[i]
n.table[p[i]] = nn
}
n = nn
}
n.value = int(value)
n.leaf = true
}
type nodeIndex struct {
lookupBlocks []*trieNode
valueBlocks []*trieNode
sparseBlocks []*trieNode
sparseOffset []uint16
sparseCount int
lookupBlockIdx map[uint32]int
valueBlockIdx map[uint32]int
}
func newIndex() *nodeIndex {
index := &nodeIndex{}
index.lookupBlocks = make([]*trieNode, 0)
index.valueBlocks = make([]*trieNode, 0)
index.sparseBlocks = make([]*trieNode, 0)
index.sparseOffset = make([]uint16, 1)
index.lookupBlockIdx = make(map[uint32]int)
index.valueBlockIdx = make(map[uint32]int)
return index
}
func computeOffsets(index *nodeIndex, n *trieNode) int {
if n.leaf {
return n.value
}
hasher := crc32.New(crc32.MakeTable(crc32.IEEE))
// We only index continuation bytes.
for i := 0; i < blockSize; i++ {
v := 0
if nn := n.table[0x80+i]; nn != nil {
v = computeOffsets(index, nn)
}
hasher.Write([]byte{uint8(v >> 8), uint8(v)})
}
h := hasher.Sum32()
if n.isInternal() {
v, ok := index.lookupBlockIdx[h]
if !ok {
v = len(index.lookupBlocks) - blockOffset
index.lookupBlocks = append(index.lookupBlocks, n)
index.lookupBlockIdx[h] = v
}
n.value = v
} else {
v, ok := index.valueBlockIdx[h]
if !ok {
if c := n.countSparseEntries(); c > maxSparseEntries {
v = len(index.valueBlocks) - blockOffset
index.valueBlocks = append(index.valueBlocks, n)
index.valueBlockIdx[h] = v
} else {
v = -len(index.sparseOffset)
index.sparseBlocks = append(index.sparseBlocks, n)
index.sparseOffset = append(index.sparseOffset, uint16(index.sparseCount))
index.sparseCount += c + 1
index.valueBlockIdx[h] = v
}
}
n.value = v
}
return n.value
}
func printValueBlock(nr int, n *trieNode, offset int) {
boff := nr * blockSize
fmt.Printf("\n// Block %#x, offset %#x", nr, boff)
var printnewline bool
for i := 0; i < blockSize; i++ {
if i%6 == 0 {
printnewline = true
}
v := 0
if nn := n.table[i+offset]; nn != nil {
v = nn.value
}
if v != 0 {
if printnewline {
fmt.Printf("\n")
printnewline = false
}
fmt.Printf("%#04x:%#04x, ", boff+i, v)
}
}
}
func printSparseBlock(nr int, n *trieNode) {
boff := -n.value
fmt.Printf("\n// Block %#x, offset %#x", nr, boff)
v := 0
//stride := f(n)
stride := n.mostFrequentStride()
c := n.countSparseEntries()
fmt.Printf("\n{value:%#04x,lo:%#02x},", stride, uint8(c))
for i, nn := range n.table[0x80 : 0x80+blockSize] {
nv := 0
if nn != nil {
nv = nn.value
}
if nv-v != stride {
if v != 0 {
fmt.Printf(",hi:%#02x},", 0x80+i-1)
}
if nv != 0 {
fmt.Printf("\n{value:%#04x,lo:%#02x", nv, nn.b)
}
}
v = nv
}
if v != 0 {
fmt.Printf(",hi:%#02x},", 0x80+blockSize-1)
}
}
func printLookupBlock(nr int, n *trieNode, offset, cutoff int) {
boff := nr * blockSize
fmt.Printf("\n// Block %#x, offset %#x", nr, boff)
var printnewline bool
for i := 0; i < blockSize; i++ {
if i%8 == 0 {
printnewline = true
}
v := 0
if nn := n.table[i+offset]; nn != nil {
v = nn.value
}
if v != 0 {
if v < 0 {
v = -v - 1 + cutoff
}
if printnewline {
fmt.Printf("\n")
printnewline = false
}
fmt.Printf("%#03x:%#02x, ", boff+i, v)
}
}
}
// printTables returns the size in bytes of the generated tables.
func (t *trieNode) printTables(name string) int {
index := newIndex()
// Values for 7-bit ASCII are stored in first two block, followed by nil block.
index.valueBlocks = append(index.valueBlocks, nil, nil, nil)
// First byte of multi-byte UTF-8 codepoints are indexed in 4th block.
index.lookupBlocks = append(index.lookupBlocks, nil, nil, nil, nil)
// Index starter bytes of multi-byte UTF-8.
for i := 0xC0; i < 0x100; i++ {
if t.table[i] != nil {
computeOffsets(index, t.table[i])
}
}
nv := len(index.valueBlocks) * blockSize
fmt.Printf("// %sValues: %d entries, %d bytes\n", name, nv, nv*2)
fmt.Printf("// Block 2 is the null block.\n")
fmt.Printf("var %sValues = [%d]uint16 {", name, nv)
printValueBlock(0, t, 0)
printValueBlock(1, t, 64)
printValueBlock(2, newNode(), 0)
for i := 3; i < len(index.valueBlocks); i++ {
printValueBlock(i, index.valueBlocks[i], 0x80)
}
fmt.Print("\n}\n\n")
ls := len(index.sparseBlocks)
fmt.Printf("// %sSparseOffset: %d entries, %d bytes\n", name, ls, ls*2)
fmt.Printf("var %sSparseOffset = %#v\n\n", name, index.sparseOffset[1:])
ns := index.sparseCount
fmt.Printf("// %sSparseValues: %d entries, %d bytes\n", name, ns, ns*4)
fmt.Printf("var %sSparseValues = [%d]valueRange {", name, ns)
for i, n := range index.sparseBlocks {
printSparseBlock(i, n)
}
fmt.Print("\n}\n\n")
cutoff := len(index.valueBlocks) - blockOffset
ni := len(index.lookupBlocks) * blockSize
fmt.Printf("// %sLookup: %d bytes\n", name, ni)
fmt.Printf("// Block 0 is the null block.\n")
fmt.Printf("var %sLookup = [%d]uint8 {", name, ni)
printLookupBlock(0, newNode(), 0, cutoff)
printLookupBlock(1, newNode(), 0, cutoff)
printLookupBlock(2, newNode(), 0, cutoff)
printLookupBlock(3, t, 0xC0, cutoff)
for i := 4; i < len(index.lookupBlocks); i++ {
printLookupBlock(i, index.lookupBlocks[i], 0x80, cutoff)
}
fmt.Print("\n}\n\n")
fmt.Printf("var %sTrie = trie{ %sLookup[:], %sValues[:], %sSparseValues[:], %sSparseOffset[:], %d}\n\n",
name, name, name, name, name, cutoff)
return nv*2 + ns*4 + ni + ls*2
}