cmd/stdiscosrv: New discovery server (fixes #4618)

This is a new revision of the discovery server. Relevant changes and
non-changes:

- Protocol towards clients is unchanged.

- Recommended large scale design is still to be deployed nehind nginx (I
  tested, and it's still a lot faster at terminating TLS).

- Database backend is leveldb again, only. It scales enough, is easy to
  setup, and we don't need any backend to take care of.

- Server supports replication. This is a simple TCP channel - protect it
  with a firewall when deploying over the internet. (We deploy this within
  the same datacenter, and with firewall.) Any incoming client announces
  are sent over the replication channel(s) to other peer discosrvs.
  Incoming replication changes are applied to the database as if they came
  from clients, but without the TLS/certificate overhead.

- Metrics are exposed using the prometheus library, when enabled.

- The database values and replication protocol is protobuf, because JSON
  was quite CPU intensive when I tried that and benchmarked it.

- The "Retry-After" value for failed lookups gets slowly increased from
  a default of 120 seconds, by 5 seconds for each failed lookup,
  independently by each discosrv. This lowers the query load over time for
  clients that are never seen. The Retry-After maxes out at 3600 after a
  couple of weeks of this increase. The number of failed lookups is
  stored in the database, now and then (avoiding making each lookup a
  database put).

All in all this means clients can be pointed towards a cluster using
just multiple A / AAAA records to gain both load sharing and redundancy
(if one is down, clients will talk to the remaining ones).

GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4648
This commit is contained in:
Jakob Borg
2018-01-14 08:52:31 +00:00
parent 341b9691a7
commit 916ec63af6
864 changed files with 216825 additions and 64540 deletions

9
vendor/github.com/a8m/mark/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,9 @@
The MIT License
Copyright (c) 2015 Ariel Mashraki
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

94
vendor/github.com/a8m/mark/cmd/mark/main.go generated vendored Normal file
View File

@@ -0,0 +1,94 @@
// mark command line tool. available at https://github.com/a8m/mark
package main
import (
"bufio"
"flag"
"fmt"
"io"
"os"
"github.com/a8m/mark"
)
var (
input = flag.String("i", "", "")
output = flag.String("o", "", "")
smarty = flag.Bool("smartypants", false, "")
fractions = flag.Bool("fractions", false, "")
)
var usage = `Usage: mark [options...] <input>
Options:
-i Specify file input, otherwise use last argument as input file.
If no input file is specified, read from stdin.
-o Specify file output. If none is specified, write to stdout.
-smartypants Use "smart" typograhic punctuation for things like
quotes and dashes.
-fractions Traslate fraction like to suitable HTML elements
`
func main() {
flag.Usage = func() {
fmt.Fprint(os.Stderr, fmt.Sprintf(usage))
}
flag.Parse()
// read
var reader *bufio.Reader
if *input != "" {
file, err := os.Open(*input)
if err != nil {
usageAndExit(fmt.Sprintf("Error to open file input: %s.", *input))
}
defer file.Close()
reader = bufio.NewReader(file)
} else {
stat, err := os.Stdin.Stat()
if err != nil || (stat.Mode()&os.ModeCharDevice) != 0 {
usageAndExit("")
}
reader = bufio.NewReader(os.Stdin)
}
// collect data
var data string
for {
line, err := reader.ReadString('\n')
if err != nil {
if err == io.EOF {
break
}
usageAndExit("failed to reading input.")
}
data += line
}
// write
var (
err error
file = os.Stdout
)
if *output != "" {
if file, err = os.Create(*output); err != nil {
usageAndExit("error to create the wanted output file.")
}
}
// mark rendering
opts := mark.DefaultOptions()
opts.Smartypants = *smarty
opts.Fractions = *fractions
m := mark.New(data, opts)
if _, err := file.WriteString(m.Render()); err != nil {
usageAndExit(fmt.Sprintf("error writing output to: %s.", file.Name()))
}
}
func usageAndExit(msg string) {
if msg != "" {
fmt.Fprintf(os.Stderr, msg)
fmt.Fprintf(os.Stderr, "\n\n")
}
flag.Usage()
fmt.Fprintf(os.Stderr, "\n")
os.Exit(1)
}

92
vendor/github.com/a8m/mark/grammar.go generated vendored Normal file
View File

@@ -0,0 +1,92 @@
package mark
import (
"fmt"
"regexp"
)
// Block Grammar
var (
reHr = regexp.MustCompile(`^(?:(?:\* *){3,}|(?:_ *){3,}|(?:- *){3,}) *(?:\n+|$)`)
reHeading = regexp.MustCompile(`^ *(#{1,6})(?: +#*| +([^\n]*?)|)(?: +#*|) *(?:\n|$)`)
reLHeading = regexp.MustCompile(`^([^\n]+?) *\n {0,3}(=|-){1,} *(?:\n+|$)`)
reBlockQuote = regexp.MustCompile(`^ *>[^\n]*(\n[^\n]+)*\n*`)
reDefLink = regexp.MustCompile(`(?s)^ *\[([^\]]+)\]: *\n? *<?([^\s>]+)>?(?: *\n? *["'(](.+?)['")])? *(?:\n+|$)`)
reSpaceGen = func(i int) *regexp.Regexp {
return regexp.MustCompile(fmt.Sprintf(`(?m)^ {1,%d}`, i))
}
)
var reList = struct {
item, marker, loose *regexp.Regexp
scanLine, scanNewLine func(src string) string
}{
regexp.MustCompile(`^( *)(?:[*+-]|\d{1,9}\.) (.*)(?:\n|)`),
regexp.MustCompile(`^ *([*+-]|\d+\.) +`),
regexp.MustCompile(`(?m)\n\n(.*)`),
regexp.MustCompile(`^(.*)(?:\n|)`).FindString,
regexp.MustCompile(`^\n{1,}`).FindString,
}
var reCodeBlock = struct {
*regexp.Regexp
trim func(src, repl string) string
}{
regexp.MustCompile(`^( {4}[^\n]+(?: *\n)*)+`),
regexp.MustCompile("(?m)^( {0,4})").ReplaceAllLiteralString,
}
var reGfmCode = struct {
*regexp.Regexp
endGen func(end string, i int) *regexp.Regexp
}{
regexp.MustCompile("^( {0,3})([`~]{3,}) *(\\S*)?(?:.*)"),
func(end string, i int) *regexp.Regexp {
return regexp.MustCompile(fmt.Sprintf(`(?s)(.*?)(?:((?m)^ {0,3}%s{%d,} *$)|$)`, end, i))
},
}
var reTable = struct {
item, itemLp *regexp.Regexp
split func(s string, n int) []string
trim func(src, repl string) string
}{
regexp.MustCompile(`^ *(\S.*\|.*)\n *([-:]+ *\|[-| :]*)\n((?:.*\|.*(?:\n|$))*)\n*`),
regexp.MustCompile(`(^ *\|.+)\n( *\| *[-:]+[-| :]*)\n((?: *\|.*(?:\n|$))*)\n*`),
regexp.MustCompile(` *\| *`).Split,
regexp.MustCompile(`^ *\| *| *\| *$`).ReplaceAllString,
}
var reHTML = struct {
CDATA_OPEN, CDATA_CLOSE string
item, comment, tag, span *regexp.Regexp
endTagGen func(tag string) *regexp.Regexp
}{
`![CDATA[`,
"?\\]\\]",
regexp.MustCompile(`^<(\w+|!\[CDATA\[)(?:"[^"]*"|'[^']*'|[^'">])*?>`),
regexp.MustCompile(`(?sm)<!--.*?-->`),
regexp.MustCompile(`^<!--.*?-->|^<\/?\w+(?:"[^"]*"|'[^']*'|[^'">])*?>`),
// TODO: Add all span-tags and move to config.
regexp.MustCompile(`^(a|em|strong|small|s|q|data|time|code|sub|sup|i|b|u|span|br|del|img)$`),
func(tag string) *regexp.Regexp {
return regexp.MustCompile(fmt.Sprintf(`(?s)(.+?)<\/%s> *`, tag))
},
}
// Inline Grammar
var (
reBr = regexp.MustCompile(`^(?: {2,}|\\)\n`)
reLinkText = `(?:\[[^\]]*\]|[^\[\]]|\])*`
reLinkHref = `\s*<?(.*?)>?(?:\s+['"\(](.*?)['"\)])?\s*`
reGfmLink = regexp.MustCompile(`^(https?:\/\/[^\s<]+[^<.,:;"')\]\s])`)
reLink = regexp.MustCompile(fmt.Sprintf(`(?s)^!?\[(%s)\]\(%s\)`, reLinkText, reLinkHref))
reAutoLink = regexp.MustCompile(`^<([^ >]+(@|:\/)[^ >]+)>`)
reRefLink = regexp.MustCompile(`^!?\[((?:\[[^\]]*\]|[^\[\]]|\])*)\](?:\s*\[([^\]]*)\])?`)
reImage = regexp.MustCompile(fmt.Sprintf(`(?s)^!?\[(%s)\]\(%s\)`, reLinkText, reLinkHref))
reCode = regexp.MustCompile("(?s)^`{1,2}\\s*(.*?[^`])\\s*`{1,2}")
reStrike = regexp.MustCompile(`(?s)^~{2}(.+?)~{2}`)
reEmphasise = `(?s)^_{%[1]d}(\S.*?_*)_{%[1]d}|^\*{%[1]d}(\S.*?\**)\*{%[1]d}`
reItalic = regexp.MustCompile(fmt.Sprintf(reEmphasise, 1))
reStrong = regexp.MustCompile(fmt.Sprintf(reEmphasise, 2))
)

568
vendor/github.com/a8m/mark/lexer.go generated vendored Normal file
View File

@@ -0,0 +1,568 @@
package mark
import (
"regexp"
"strings"
"unicode/utf8"
)
// type position
type Pos int
// itemType identifies the type of lex items.
type itemType int
// Item represent a token or text string returned from the scanner
type item struct {
typ itemType // The type of this item.
pos Pos // The starting position, in bytes, of this item in the input string.
val string // The value of this item.
}
const eof = -1 // Zero value so closed channel delivers EOF
const (
itemError itemType = iota // Error occurred; value is text of error
itemEOF
itemNewLine
itemHTML
itemHeading
itemLHeading
itemBlockQuote
itemList
itemListItem
itemLooseItem
itemCodeBlock
itemGfmCodeBlock
itemHr
itemTable
itemLpTable
itemTableRow
itemTableCell
itemStrong
itemItalic
itemStrike
itemCode
itemLink
itemDefLink
itemRefLink
itemAutoLink
itemGfmLink
itemImage
itemRefImage
itemText
itemBr
itemPipe
itemIndent
)
// stateFn represents the state of the scanner as a function that returns the next state.
type stateFn func(*lexer) stateFn
// Lexer interface, used to composed it inside the parser
type Lexer interface {
nextItem() item
}
// lexer holds the state of the scanner.
type lexer struct {
input string // the string being scanned
state stateFn // the next lexing function to enter
pos Pos // current position in the input
start Pos // start position of this item
width Pos // width of last rune read from input
lastPos Pos // position of most recent item returned by nextItem
items chan item // channel of scanned items
}
// lex creates a new lexer for the input string.
func lex(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.run()
return l
}
// lexInline create a new lexer for one phase lexing(inline blocks).
func lexInline(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.lexInline()
return l
}
// run runs the state machine for the lexer.
func (l *lexer) run() {
for l.state = lexAny; l.state != nil; {
l.state = l.state(l)
}
close(l.items)
}
// next return the next rune in the input
func (l *lexer) next() rune {
if int(l.pos) >= len(l.input) {
l.width = 0
return eof
}
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
l.width = Pos(w)
l.pos += l.width
return r
}
// lexAny scanner is kind of forwarder, it get the current char in the text
// and forward it to the appropriate scanner based on some conditions.
func lexAny(l *lexer) stateFn {
switch r := l.peek(); r {
case '*', '-', '_':
return lexHr
case '+', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
return lexList
case '<':
return lexHTML
case '>':
return lexBlockQuote
case '[':
return lexDefLink
case '#':
return lexHeading
case '`', '~':
return lexGfmCode
case ' ':
if reCodeBlock.MatchString(l.input[l.pos:]) {
return lexCode
} else if reGfmCode.MatchString(l.input[l.pos:]) {
return lexGfmCode
}
// Keep moving forward until we get all the indentation size
for ; r == l.peek(); r = l.next() {
}
l.emit(itemIndent)
return lexAny
case '|':
if m := reTable.itemLp.MatchString(l.input[l.pos:]); m {
l.emit(itemLpTable)
return lexTable
}
fallthrough
default:
if m := reTable.item.MatchString(l.input[l.pos:]); m {
l.emit(itemTable)
return lexTable
}
return lexText
}
}
// lexHeading test if the current text position is an heading item.
// is so, it will emit an item and return back to lenAny function
// else, lex it as a simple text value
func lexHeading(l *lexer) stateFn {
if m := reHeading.FindString(l.input[l.pos:]); m != "" {
l.pos += Pos(len(m))
l.emit(itemHeading)
return lexAny
}
return lexText
}
// lexHr test if the current text position is an horizontal rules item.
// is so, it will emit an horizontal rule item and return back to lenAny function
// else, forward it to lexList function
func lexHr(l *lexer) stateFn {
if match := reHr.FindString(l.input[l.pos:]); match != "" {
l.pos += Pos(len(match))
l.emit(itemHr)
return lexAny
}
return lexList
}
// lexGfmCode test if the current text position is start of GFM code-block item.
// if so, it will generate regexp based on the fence type[`~] and it length.
// it scan until the end, and then emit the code-block item and return back to the
// lenAny forwarder.
// else, lex it as a simple inline text.
func lexGfmCode(l *lexer) stateFn {
if match := reGfmCode.FindStringSubmatch(l.input[l.pos:]); len(match) != 0 {
l.pos += Pos(len(match[0]))
fence := match[2]
// Generate Regexp based on fence type[`~] and length
reGfmEnd := reGfmCode.endGen(fence[0:1], len(fence))
infoContainer := reGfmEnd.FindStringSubmatch(l.input[l.pos:])
l.pos += Pos(len(infoContainer[0]))
infoString := infoContainer[1]
// Remove leading and trailing spaces
if indent := len(match[1]); indent > 0 {
reSpace := reSpaceGen(indent)
infoString = reSpace.ReplaceAllString(infoString, "")
}
l.emit(itemGfmCodeBlock, match[0]+infoString)
return lexAny
}
return lexText
}
// lexCode scans code block.
func lexCode(l *lexer) stateFn {
match := reCodeBlock.FindString(l.input[l.pos:])
l.pos += Pos(len(match))
l.emit(itemCodeBlock)
return lexAny
}
// lexText scans until end-of-line(\n)
func lexText(l *lexer) stateFn {
// Drain text before emitting
emit := func(item itemType, pos Pos) {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += pos
l.emit(item)
}
Loop:
for {
switch r := l.peek(); r {
case eof:
emit(itemEOF, Pos(0))
break Loop
case '\n':
// CM 4.4: An indented code block cannot interrupt a paragraph.
if l.pos > l.start && strings.HasPrefix(l.input[l.pos+1:], " ") {
l.next()
continue
}
emit(itemNewLine, l.width)
break Loop
default:
// Test for Setext-style headers
if m := reLHeading.FindString(l.input[l.pos:]); m != "" {
emit(itemLHeading, Pos(len(m)))
break Loop
}
l.next()
}
}
return lexAny
}
// backup steps back one rune. Can only be called once per call of next.
func (l *lexer) backup() {
l.pos -= l.width
}
// peek returns but does not consume the next rune in the input.
func (l *lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// emit passes an item back to the client.
func (l *lexer) emit(t itemType, s ...string) {
if len(s) == 0 {
s = append(s, l.input[l.start:l.pos])
}
l.items <- item{t, l.start, s[0]}
l.start = l.pos
}
// lexItem return the next item token, called by the parser.
func (l *lexer) nextItem() item {
item := <-l.items
l.lastPos = l.pos
return item
}
// One phase lexing(inline reason)
func (l *lexer) lexInline() {
escape := regexp.MustCompile("^\\\\([\\`*{}\\[\\]()#+\\-.!_>~|])")
// Drain text before emitting
emit := func(item itemType, pos int) {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += Pos(pos)
l.emit(item)
}
Loop:
for {
switch r := l.peek(); r {
case eof:
if l.pos > l.start {
l.emit(itemText)
}
break Loop
// backslash escaping
case '\\':
if m := escape.FindStringSubmatch(l.input[l.pos:]); len(m) != 0 {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += Pos(len(m[0]))
l.emit(itemText, m[1])
break
}
fallthrough
case ' ':
if m := reBr.FindString(l.input[l.pos:]); m != "" {
// pos - length of new-line
emit(itemBr, len(m))
break
}
l.next()
case '_', '*', '~', '`':
input := l.input[l.pos:]
// Strong
if m := reStrong.FindString(input); m != "" {
emit(itemStrong, len(m))
break
}
// Italic
if m := reItalic.FindString(input); m != "" {
emit(itemItalic, len(m))
break
}
// Strike
if m := reStrike.FindString(input); m != "" {
emit(itemStrike, len(m))
break
}
// InlineCode
if m := reCode.FindString(input); m != "" {
emit(itemCode, len(m))
break
}
l.next()
// itemLink, itemImage, itemRefLink, itemRefImage
case '[', '!':
input := l.input[l.pos:]
if m := reLink.FindString(input); m != "" {
pos := len(m)
if r == '[' {
emit(itemLink, pos)
} else {
emit(itemImage, pos)
}
break
}
if m := reRefLink.FindString(input); m != "" {
pos := len(m)
if r == '[' {
emit(itemRefLink, pos)
} else {
emit(itemRefImage, pos)
}
break
}
l.next()
// itemAutoLink, htmlBlock
case '<':
if m := reAutoLink.FindString(l.input[l.pos:]); m != "" {
emit(itemAutoLink, len(m))
break
}
if match, res := l.matchHTML(l.input[l.pos:]); match {
emit(itemHTML, len(res))
break
}
l.next()
default:
if m := reGfmLink.FindString(l.input[l.pos:]); m != "" {
emit(itemGfmLink, len(m))
break
}
l.next()
}
}
close(l.items)
}
// lexHTML.
func lexHTML(l *lexer) stateFn {
if match, res := l.matchHTML(l.input[l.pos:]); match {
l.pos += Pos(len(res))
l.emit(itemHTML)
return lexAny
}
return lexText
}
// Test if the given input is match the HTML pattern(blocks only)
func (l *lexer) matchHTML(input string) (bool, string) {
if m := reHTML.comment.FindString(input); m != "" {
return true, m
}
if m := reHTML.item.FindStringSubmatch(input); len(m) != 0 {
el, name := m[0], m[1]
// if name is a span... is a text
if reHTML.span.MatchString(name) {
return false, ""
}
// if it's a self-closed html element, but not a itemAutoLink
if strings.HasSuffix(el, "/>") && !reAutoLink.MatchString(el) {
return true, el
}
if name == reHTML.CDATA_OPEN {
name = reHTML.CDATA_CLOSE
}
reEndTag := reHTML.endTagGen(name)
if m := reEndTag.FindString(input); m != "" {
return true, m
}
}
return false, ""
}
// lexDefLink scans link definition
func lexDefLink(l *lexer) stateFn {
if m := reDefLink.FindString(l.input[l.pos:]); m != "" {
l.pos += Pos(len(m))
l.emit(itemDefLink)
return lexAny
}
return lexText
}
// lexList scans ordered and unordered lists.
func lexList(l *lexer) stateFn {
match, items := l.matchList(l.input[l.pos:])
if !match {
return lexText
}
var space int
var typ itemType
for i, item := range items {
// Emit itemList on the first loop
if i == 0 {
l.emit(itemList, reList.marker.FindStringSubmatch(item)[1])
}
// Initialize each loop
typ = itemListItem
space = len(item)
l.pos += Pos(space)
item = reList.marker.ReplaceAllString(item, "")
// Indented
if strings.Contains(item, "\n ") {
space -= len(item)
reSpace := reSpaceGen(space)
item = reSpace.ReplaceAllString(item, "")
}
// If current is loose
for _, l := range reList.loose.FindAllString(item, -1) {
if len(strings.TrimSpace(l)) > 0 || i != len(items)-1 {
typ = itemLooseItem
break
}
}
// or previous
if typ != itemLooseItem && i > 0 && strings.HasSuffix(items[i-1], "\n\n") {
typ = itemLooseItem
}
l.emit(typ, strings.TrimSpace(item))
}
return lexAny
}
func (l *lexer) matchList(input string) (bool, []string) {
var res []string
reItem := reList.item
if !reItem.MatchString(input) {
return false, res
}
// First item
m := reItem.FindStringSubmatch(input)
item, depth := m[0], len(m[1])
input = input[len(item):]
// Loop over the input
for len(input) > 0 {
// Count new-lines('\n')
if m := reList.scanNewLine(input); m != "" {
item += m
input = input[len(m):]
if len(m) >= 2 || !reItem.MatchString(input) && !strings.HasPrefix(input, " ") {
break
}
}
// DefLink or hr
if reDefLink.MatchString(input) || reHr.MatchString(input) {
break
}
// It's list in the same depth
if m := reItem.FindStringSubmatch(input); len(m) > 0 && len(m[1]) == depth {
if item != "" {
res = append(res, item)
}
item = m[0]
input = input[len(item):]
} else {
m := reList.scanLine(input)
item += m
input = input[len(m):]
}
}
// Drain res
if item != "" {
res = append(res, item)
}
return true, res
}
// Test if the given input match blockquote
func (l *lexer) matchBlockQuote(input string) (bool, string) {
match := reBlockQuote.FindString(input)
if match == "" {
return false, match
}
lines := strings.Split(match, "\n")
for i, line := range lines {
// if line is a link-definition or horizontal role, we cut the match until this point
if reDefLink.MatchString(line) || reHr.MatchString(line) {
match = strings.Join(lines[0:i], "\n")
break
}
}
return true, match
}
// lexBlockQuote
func lexBlockQuote(l *lexer) stateFn {
if match, res := l.matchBlockQuote(l.input[l.pos:]); match {
l.pos += Pos(len(res))
l.emit(itemBlockQuote)
return lexAny
}
return lexText
}
// lexTable
func lexTable(l *lexer) stateFn {
re := reTable.item
if l.peek() == '|' {
re = reTable.itemLp
}
table := re.FindStringSubmatch(l.input[l.pos:])
l.pos += Pos(len(table[0]))
l.start = l.pos
// Ignore the first match, and flat all rows(by splitting \n)
rows := append(table[1:3], strings.Split(table[3], "\n")...)
for _, row := range rows {
if row == "" {
continue
}
l.emit(itemTableRow)
rawCells := reTable.trim(row, "")
cells := reTable.split(rawCells, -1)
// Emit cells in the current row
for _, cell := range cells {
l.emit(itemTableCell, cell)
}
}
return lexAny
}

60
vendor/github.com/a8m/mark/mark.go generated vendored Normal file
View File

@@ -0,0 +1,60 @@
package mark
import "strings"
// Mark
type Mark struct {
*parse
Input string
}
// Mark options used to configure your Mark object
// set `Smartypants` and `Fractions` to true to enable
// smartypants and smartfractions rendering.
type Options struct {
Gfm bool
Tables bool
Smartypants bool
Fractions bool
}
// DefaultOptions return an options struct with default configuration
// it's means that only Gfm, and Tables set to true.
func DefaultOptions() *Options {
return &Options{
Gfm: true,
Tables: true,
}
}
// New return a new Mark
func New(input string, opts *Options) *Mark {
// Preprocessing
input = strings.Replace(input, "\t", " ", -1)
if opts == nil {
opts = DefaultOptions()
}
return &Mark{
Input: input,
parse: newParse(input, opts),
}
}
// parse and render input
func (m *Mark) Render() string {
m.parse.parse()
m.render()
return m.output
}
// AddRenderFn let you pass NodeType, and RenderFn function
// and override the default Node rendering
func (m *Mark) AddRenderFn(typ NodeType, fn RenderFn) {
m.renderFn[typ] = fn
}
// Staic render function
func Render(input string) string {
m := New(input, nil)
return m.Render()
}

614
vendor/github.com/a8m/mark/node.go generated vendored Normal file
View File

@@ -0,0 +1,614 @@
package mark
import (
"fmt"
"regexp"
"strconv"
"strings"
)
// A Node is an element in the parse tree.
type Node interface {
Type() NodeType
Render() string
}
// NodeType identifies the type of a parse tree node.
type NodeType int
// Type returns itself and provides an easy default implementation
// for embedding in a Node. Embedded in all non-trivial Nodes.
func (t NodeType) Type() NodeType {
return t
}
// Render function, used for overriding default rendering.
type RenderFn func(Node) string
const (
NodeText NodeType = iota // A plain text
NodeParagraph // A Paragraph
NodeEmphasis // An emphasis(strong, em, ...)
NodeHeading // A heading (h1, h2, ...)
NodeBr // A link break
NodeHr // A horizontal rule
NodeImage // An image
NodeRefImage // A image reference
NodeList // A list of ListItems
NodeListItem // A list item node
NodeLink // A link(href)
NodeRefLink // A link reference
NodeDefLink // A link definition
NodeTable // A table of NodeRows
NodeRow // A row of NodeCells
NodeCell // A table-cell(td)
NodeCode // A code block(wrapped with pre)
NodeBlockQuote // A blockquote
NodeHTML // An inline HTML
NodeCheckbox // A checkbox
)
// ParagraphNode hold simple paragraph node contains text
// that may be emphasis.
type ParagraphNode struct {
NodeType
Pos
Nodes []Node
}
// Render returns the html representation of ParagraphNode
func (n *ParagraphNode) Render() (s string) {
for _, node := range n.Nodes {
s += node.Render()
}
return wrap("p", s)
}
func (p *parse) newParagraph(pos Pos) *ParagraphNode {
return &ParagraphNode{NodeType: NodeParagraph, Pos: pos}
}
// TextNode holds plain text.
type TextNode struct {
NodeType
Pos
Text string
}
// Render returns the string representation of TexNode
func (n *TextNode) Render() string {
return n.Text
}
func (p *parse) newText(pos Pos, text string) *TextNode {
return &TextNode{NodeType: NodeText, Pos: pos, Text: p.text(text)}
}
// HTMLNode holds the raw html source.
type HTMLNode struct {
NodeType
Pos
Src string
}
// Render returns the src of the HTMLNode
func (n *HTMLNode) Render() string {
return n.Src
}
func (p *parse) newHTML(pos Pos, src string) *HTMLNode {
return &HTMLNode{NodeType: NodeHTML, Pos: pos, Src: src}
}
// HrNode represents horizontal rule
type HrNode struct {
NodeType
Pos
}
// Render returns the html representation of hr.
func (n *HrNode) Render() string {
return "<hr>"
}
func (p *parse) newHr(pos Pos) *HrNode {
return &HrNode{NodeType: NodeHr, Pos: pos}
}
// BrNode represents a link-break element.
type BrNode struct {
NodeType
Pos
}
// Render returns the html representation of line-break.
func (n *BrNode) Render() string {
return "<br>"
}
func (p *parse) newBr(pos Pos) *BrNode {
return &BrNode{NodeType: NodeBr, Pos: pos}
}
// EmphasisNode holds plain-text wrapped with style.
// (strong, em, del, code)
type EmphasisNode struct {
NodeType
Pos
Style itemType
Nodes []Node
}
// Tag return the tagName based on the Style field.
func (n *EmphasisNode) Tag() (s string) {
switch n.Style {
case itemStrong:
s = "strong"
case itemItalic:
s = "em"
case itemStrike:
s = "del"
case itemCode:
s = "code"
}
return
}
// Return the html representation of emphasis text.
func (n *EmphasisNode) Render() string {
var s string
for _, node := range n.Nodes {
s += node.Render()
}
return wrap(n.Tag(), s)
}
func (p *parse) newEmphasis(pos Pos, style itemType) *EmphasisNode {
return &EmphasisNode{NodeType: NodeEmphasis, Pos: pos, Style: style}
}
// HeadingNode holds heaing element with specific level(1-6).
type HeadingNode struct {
NodeType
Pos
Level int
Text string
Nodes []Node
}
// Render returns the html representation based on heading level.
func (n *HeadingNode) Render() (s string) {
for _, node := range n.Nodes {
s += node.Render()
}
re := regexp.MustCompile(`[^\w]+`)
id := re.ReplaceAllString(n.Text, "-")
// ToLowerCase
id = strings.ToLower(id)
return fmt.Sprintf("<%[1]s id=\"%s\">%s</%[1]s>", "h"+strconv.Itoa(n.Level), id, s)
}
func (p *parse) newHeading(pos Pos, level int, text string) *HeadingNode {
return &HeadingNode{NodeType: NodeHeading, Pos: pos, Level: level, Text: p.text(text)}
}
// Code holds CodeBlock node with specific lang field.
type CodeNode struct {
NodeType
Pos
Lang, Text string
}
// Return the html representation of codeBlock
func (n *CodeNode) Render() string {
var attr string
if n.Lang != "" {
attr = fmt.Sprintf(" class=\"lang-%s\"", n.Lang)
}
code := fmt.Sprintf("<%[1]s%s>%s</%[1]s>", "code", attr, n.Text)
return wrap("pre", code)
}
func (p *parse) newCode(pos Pos, lang, text string) *CodeNode {
// DRY: see `escape()` below
text = strings.NewReplacer("<", "&lt;", ">", "&gt;", "\"", "&quot;", "&", "&amp;").Replace(text)
return &CodeNode{NodeType: NodeCode, Pos: pos, Lang: lang, Text: text}
}
// Link holds a tag with optional title
type LinkNode struct {
NodeType
Pos
Title, Href string
Nodes []Node
}
// Return the html representation of link node
func (n *LinkNode) Render() (s string) {
for _, node := range n.Nodes {
s += node.Render()
}
attrs := fmt.Sprintf("href=\"%s\"", n.Href)
if n.Title != "" {
attrs += fmt.Sprintf(" title=\"%s\"", n.Title)
}
return fmt.Sprintf("<a %s>%s</a>", attrs, s)
}
func (p *parse) newLink(pos Pos, title, href string, nodes ...Node) *LinkNode {
return &LinkNode{NodeType: NodeLink, Pos: pos, Title: p.text(title), Href: p.text(href), Nodes: nodes}
}
// RefLink holds link with refrence to link definition
type RefNode struct {
NodeType
Pos
tr *parse
Text, Ref, Raw string
Nodes []Node
}
// rendering based type
func (n *RefNode) Render() string {
var node Node
ref := strings.ToLower(n.Ref)
if l, ok := n.tr.links[ref]; ok {
if n.Type() == NodeRefLink {
node = n.tr.newLink(n.Pos, l.Title, l.Href, n.Nodes...)
} else {
node = n.tr.newImage(n.Pos, l.Title, l.Href, n.Text)
}
} else {
node = n.tr.newText(n.Pos, n.Raw)
}
return node.Render()
}
// newRefLink create new RefLink that suitable for link
func (p *parse) newRefLink(typ itemType, pos Pos, raw, ref string, text []Node) *RefNode {
return &RefNode{NodeType: NodeRefLink, Pos: pos, tr: p.root(), Raw: raw, Ref: ref, Nodes: text}
}
// newRefImage create new RefLink that suitable for image
func (p *parse) newRefImage(typ itemType, pos Pos, raw, ref, text string) *RefNode {
return &RefNode{NodeType: NodeRefImage, Pos: pos, tr: p.root(), Raw: raw, Ref: ref, Text: text}
}
// DefLinkNode refresent single reference to link-definition
type DefLinkNode struct {
NodeType
Pos
Name, Href, Title string
}
// Deflink have no representation(Transparent node)
func (n *DefLinkNode) Render() string {
return ""
}
func (p *parse) newDefLink(pos Pos, name, href, title string) *DefLinkNode {
return &DefLinkNode{NodeType: NodeLink, Pos: pos, Name: name, Href: href, Title: title}
}
// ImageNode represents an image element with optional alt and title attributes.
type ImageNode struct {
NodeType
Pos
Title, Src, Alt string
}
// Render returns the html representation on image node
func (n *ImageNode) Render() string {
attrs := fmt.Sprintf("src=\"%s\" alt=\"%s\"", n.Src, n.Alt)
if n.Title != "" {
attrs += fmt.Sprintf(" title=\"%s\"", n.Title)
}
return fmt.Sprintf("<img %s>", attrs)
}
func (p *parse) newImage(pos Pos, title, src, alt string) *ImageNode {
return &ImageNode{NodeType: NodeImage, Pos: pos, Title: p.text(title), Src: p.text(src), Alt: p.text(alt)}
}
// ListNode holds list items nodes in ordered or unordered states.
type ListNode struct {
NodeType
Pos
Ordered bool
Items []*ListItemNode
}
func (n *ListNode) append(item *ListItemNode) {
n.Items = append(n.Items, item)
}
// Render returns the html representation of orderd(ol) or unordered(ul) list.
func (n *ListNode) Render() (s string) {
tag := "ul"
if n.Ordered {
tag = "ol"
}
for _, item := range n.Items {
s += "\n" + item.Render()
}
s += "\n"
return wrap(tag, s)
}
func (p *parse) newList(pos Pos, ordered bool) *ListNode {
return &ListNode{NodeType: NodeList, Pos: pos, Ordered: ordered}
}
// ListItem represents single item in ListNode that may contains nested nodes.
type ListItemNode struct {
NodeType
Pos
Nodes []Node
}
func (l *ListItemNode) append(n Node) {
l.Nodes = append(l.Nodes, n)
}
// Render returns the html representation of list-item
func (l *ListItemNode) Render() (s string) {
for _, node := range l.Nodes {
s += node.Render()
}
return wrap("li", s)
}
func (p *parse) newListItem(pos Pos) *ListItemNode {
return &ListItemNode{NodeType: NodeListItem, Pos: pos}
}
// TableNode represents table element contains head and body
type TableNode struct {
NodeType
Pos
Rows []*RowNode
}
func (n *TableNode) append(row *RowNode) {
n.Rows = append(n.Rows, row)
}
// Render returns the html representation of a table
func (n *TableNode) Render() string {
var s string
for i, row := range n.Rows {
s += "\n"
switch i {
case 0:
s += wrap("thead", "\n"+row.Render()+"\n")
case 1:
s += "<tbody>\n"
fallthrough
default:
s += row.Render()
}
}
s += "\n</tbody>\n"
return wrap("table", s)
}
func (p *parse) newTable(pos Pos) *TableNode {
return &TableNode{NodeType: NodeTable, Pos: pos}
}
// RowNode represnt tr that holds list of cell-nodes
type RowNode struct {
NodeType
Pos
Cells []*CellNode
}
func (r *RowNode) append(cell *CellNode) {
r.Cells = append(r.Cells, cell)
}
// Render returns the html representation of table-row
func (r *RowNode) Render() string {
var s string
for _, cell := range r.Cells {
s += "\n" + cell.Render()
}
s += "\n"
return wrap("tr", s)
}
func (p *parse) newRow(pos Pos) *RowNode {
return &RowNode{NodeType: NodeRow, Pos: pos}
}
// AlignType identifies the aligment-type of specfic cell.
type AlignType int
// Align returns itself and provides an easy default implementation
// for embedding in a Node.
func (t AlignType) Align() AlignType {
return t
}
// Alignment
const (
None AlignType = iota
Right
Left
Center
)
// Cell types
const (
Header = iota
Data
)
// CellNode represents table-data/cell that holds simple text(may be emphasis)
// Note: the text in <th> elements are bold and centered by default.
type CellNode struct {
NodeType
Pos
AlignType
Kind int
Nodes []Node
}
// Render returns the html reprenestation of table-cell
func (c *CellNode) Render() string {
var s string
tag := "td"
if c.Kind == Header {
tag = "th"
}
for _, node := range c.Nodes {
s += node.Render()
}
return fmt.Sprintf("<%[1]s%s>%s</%[1]s>", tag, c.Style(), s)
}
// Style return the cell-style based on alignment field
func (c *CellNode) Style() string {
s := " style=\"text-align:"
switch c.Align() {
case Right:
s += "right\""
case Left:
s += "left\""
case Center:
s += "center\""
default:
s = ""
}
return s
}
func (p *parse) newCell(pos Pos, kind int, align AlignType) *CellNode {
return &CellNode{NodeType: NodeCell, Pos: pos, Kind: kind, AlignType: align}
}
// BlockQuote represents block-quote tag.
type BlockQuoteNode struct {
NodeType
Pos
Nodes []Node
}
// Render returns the html representation of BlockQuote
func (n *BlockQuoteNode) Render() string {
var s string
for _, node := range n.Nodes {
s += node.Render()
}
return wrap("blockquote", s)
}
func (p *parse) newBlockQuote(pos Pos) *BlockQuoteNode {
return &BlockQuoteNode{NodeType: NodeBlockQuote, Pos: pos}
}
// CheckboxNode represents checked and unchecked checkbox tag.
// Used in task lists.
type CheckboxNode struct {
NodeType
Pos
Checked bool
}
// Render returns the html representation of checked and unchecked CheckBox.
func (n *CheckboxNode) Render() string {
s := "<input type=\"checkbox\""
if n.Checked {
s += " checked"
}
return s + ">"
}
func (p *parse) newCheckbox(pos Pos, checked bool) *CheckboxNode {
return &CheckboxNode{NodeType: NodeCheckbox, Pos: pos, Checked: checked}
}
// Wrap text with specific tag.
func wrap(tag, body string) string {
return fmt.Sprintf("<%[1]s>%s</%[1]s>", tag, body)
}
// Group all text configuration in one place(escaping, smartypants, etc..)
func (p *parse) text(input string) string {
opts := p.root().options
if opts.Smartypants {
input = smartypants(input)
}
if opts.Fractions {
input = smartyfractions(input)
}
return escape(input)
}
// Helper escaper
func escape(str string) (cpy string) {
emp := regexp.MustCompile(`&\w+;`)
for i := 0; i < len(str); i++ {
switch s := str[i]; s {
case '>':
cpy += "&gt;"
case '"':
cpy += "&quot;"
case '\'':
cpy += "&#39;"
case '<':
if res := reHTML.tag.FindString(str[i:]); res != "" {
cpy += res
i += len(res) - 1
} else {
cpy += "&lt;"
}
case '&':
if res := emp.FindString(str[i:]); res != "" {
cpy += res
i += len(res) - 1
} else {
cpy += "&amp;"
}
default:
cpy += str[i : i+1]
}
}
return
}
// Smartypants transformation helper, translate from marked.js
func smartypants(text string) string {
// em-dashes, en-dashes, ellipses
re := strings.NewReplacer("---", "\u2014", "--", "\u2013", "...", "\u2026")
text = re.Replace(text)
// opening singles
text = regexp.MustCompile("(^|[-\u2014/(\\[{\"\\s])'").ReplaceAllString(text, "$1\u2018")
// closing singles & apostrophes
text = strings.Replace(text, "'", "\u2019", -1)
// opening doubles
text = regexp.MustCompile("(^|[-\u2014/(\\[{\u2018\\s])\"").ReplaceAllString(text, "$1\u201c")
// closing doubles
text = strings.Replace(text, "\"", "\u201d", -1)
return text
}
// Smartyfractions transformation helper.
func smartyfractions(text string) string {
re := regexp.MustCompile(`(\d+)(/\d+)(/\d+|)`)
return re.ReplaceAllStringFunc(text, func(str string) string {
var match []string
// If it's date like
if match = re.FindStringSubmatch(str); match[3] != "" {
return str
}
switch n := match[1] + match[2]; n {
case "1/2", "1/3", "2/3", "1/4", "3/4", "1/5", "2/5", "3/5", "4/5",
"1/6", "5/6", "1/7", "1/8", "3/8", "5/8", "7/8":
return fmt.Sprintf("&frac%s;", strings.Replace(n, "/", "", 1))
default:
return fmt.Sprintf("<sup>%s</sup>&frasl;<sub>%s</sub>",
match[1], strings.Replace(match[2], "/", "", 1))
}
})
}

436
vendor/github.com/a8m/mark/parser.go generated vendored Normal file
View File

@@ -0,0 +1,436 @@
package mark
import (
"regexp"
"strings"
"unicode"
"unicode/utf8"
)
// parse holds the state of the parser.
type parse struct {
Nodes []Node
lex Lexer
options *Options
tr *parse
output string
peekCount int
token [3]item // three-token lookahead for parser
links map[string]*DefLinkNode // Deflink parsing, used RefLinks
renderFn map[NodeType]RenderFn // Custom overridden fns
}
// Return new parser
func newParse(input string, opts *Options) *parse {
return &parse{
lex: lex(input),
options: opts,
links: make(map[string]*DefLinkNode),
renderFn: make(map[NodeType]RenderFn),
}
}
// parse convert the raw text to Nodeparse.
func (p *parse) parse() {
Loop:
for {
var n Node
switch t := p.peek(); t.typ {
case itemEOF, itemError:
break Loop
case itemNewLine:
p.next()
case itemHr:
n = p.newHr(p.next().pos)
case itemHTML:
t = p.next()
n = p.newHTML(t.pos, t.val)
case itemDefLink:
n = p.parseDefLink()
case itemHeading, itemLHeading:
n = p.parseHeading()
case itemCodeBlock, itemGfmCodeBlock:
n = p.parseCodeBlock()
case itemList:
n = p.parseList()
case itemTable, itemLpTable:
n = p.parseTable()
case itemBlockQuote:
n = p.parseBlockQuote()
case itemIndent:
space := p.next()
// If it isn't followed by itemText
if p.peek().typ != itemText {
continue
}
p.backup2(space)
fallthrough
// itemText
default:
tmp := p.newParagraph(t.pos)
tmp.Nodes = p.parseText(p.next().val + p.scanLines())
n = tmp
}
if n != nil {
p.append(n)
}
}
}
// Root getter
func (p *parse) root() *parse {
if p.tr == nil {
return p
}
return p.tr.root()
}
// Render parse nodes to the wanted output
func (p *parse) render() {
var output string
for i, node := range p.Nodes {
// If there's a custom render function, use it instead.
if fn, ok := p.renderFn[node.Type()]; ok {
output = fn(node)
} else {
output = node.Render()
}
p.output += output
if output != "" && i != len(p.Nodes)-1 {
p.output += "\n"
}
}
}
// append new node to nodes-list
func (p *parse) append(n Node) {
p.Nodes = append(p.Nodes, n)
}
// next returns the next token
func (p *parse) next() item {
if p.peekCount > 0 {
p.peekCount--
} else {
p.token[0] = p.lex.nextItem()
}
return p.token[p.peekCount]
}
// peek returns but does not consume the next token.
func (p *parse) peek() item {
if p.peekCount > 0 {
return p.token[p.peekCount-1]
}
p.peekCount = 1
p.token[0] = p.lex.nextItem()
return p.token[0]
}
// backup backs the input stream tp one token
func (p *parse) backup() {
p.peekCount++
}
// backup2 backs the input stream up two tokens.
// The zeroth token is already there.
func (p *parse) backup2(t1 item) {
p.token[1] = t1
p.peekCount = 2
}
// parseText
func (p *parse) parseText(input string) (nodes []Node) {
// Trim whitespaces that not a line-break
input = regexp.MustCompile(`(?m)^ +| +(\n|$)`).ReplaceAllStringFunc(input, func(s string) string {
if reBr.MatchString(s) {
return s
}
return strings.Replace(s, " ", "", -1)
})
l := lexInline(input)
for token := range l.items {
var node Node
switch token.typ {
case itemBr:
node = p.newBr(token.pos)
case itemStrong, itemItalic, itemStrike, itemCode:
node = p.parseEmphasis(token.typ, token.pos, token.val)
case itemLink, itemAutoLink, itemGfmLink:
var title, href string
var text []Node
if token.typ == itemLink {
match := reLink.FindStringSubmatch(token.val)
text = p.parseText(match[1])
href, title = match[2], match[3]
} else {
var match []string
if token.typ == itemGfmLink {
match = reGfmLink.FindStringSubmatch(token.val)
} else {
match = reAutoLink.FindStringSubmatch(token.val)
}
href = match[1]
text = append(text, p.newText(token.pos, match[1]))
}
node = p.newLink(token.pos, title, href, text...)
case itemImage:
match := reImage.FindStringSubmatch(token.val)
node = p.newImage(token.pos, match[3], match[2], match[1])
case itemRefLink, itemRefImage:
match := reRefLink.FindStringSubmatch(token.val)
text, ref := match[1], match[2]
if ref == "" {
ref = text
}
if token.typ == itemRefLink {
node = p.newRefLink(token.typ, token.pos, token.val, ref, p.parseText(text))
} else {
node = p.newRefImage(token.typ, token.pos, token.val, ref, text)
}
case itemHTML:
node = p.newHTML(token.pos, token.val)
default:
node = p.newText(token.pos, token.val)
}
nodes = append(nodes, node)
}
return nodes
}
// parse inline emphasis
func (p *parse) parseEmphasis(typ itemType, pos Pos, val string) *EmphasisNode {
var re *regexp.Regexp
switch typ {
case itemStrike:
re = reStrike
case itemStrong:
re = reStrong
case itemCode:
re = reCode
case itemItalic:
re = reItalic
}
node := p.newEmphasis(pos, typ)
match := re.FindStringSubmatch(val)
text := match[len(match)-1]
if text == "" {
text = match[1]
}
node.Nodes = p.parseText(text)
return node
}
// parse heading block
func (p *parse) parseHeading() (node *HeadingNode) {
token := p.next()
level := 1
var text string
if token.typ == itemHeading {
match := reHeading.FindStringSubmatch(token.val)
level, text = len(match[1]), match[2]
} else {
match := reLHeading.FindStringSubmatch(token.val)
// using equal signs for first-level, and dashes for second-level.
text = match[1]
if match[2] == "-" {
level = 2
}
}
node = p.newHeading(token.pos, level, text)
node.Nodes = p.parseText(text)
return
}
func (p *parse) parseDefLink() *DefLinkNode {
token := p.next()
match := reDefLink.FindStringSubmatch(token.val)
name := strings.ToLower(match[1])
// name(lowercase), href, title
n := p.newDefLink(token.pos, name, match[2], match[3])
// store in links
links := p.root().links
if _, ok := links[name]; !ok {
links[name] = n
}
return n
}
// parse codeBlock
func (p *parse) parseCodeBlock() *CodeNode {
var lang, text string
token := p.next()
if token.typ == itemGfmCodeBlock {
codeStart := reGfmCode.FindStringSubmatch(token.val)
lang = codeStart[3]
text = token.val[len(codeStart[0]):]
} else {
text = reCodeBlock.trim(token.val, "")
}
return p.newCode(token.pos, lang, text)
}
func (p *parse) parseBlockQuote() (n *BlockQuoteNode) {
token := p.next()
// replacer
re := regexp.MustCompile(`(?m)^ *> ?`)
raw := re.ReplaceAllString(token.val, "")
// TODO(a8m): doesn't work right now with defLink(inside the blockQuote)
tr := &parse{lex: lex(raw), tr: p}
tr.parse()
n = p.newBlockQuote(token.pos)
n.Nodes = tr.Nodes
return
}
// parse list
func (p *parse) parseList() *ListNode {
token := p.next()
list := p.newList(token.pos, isDigit(token.val))
Loop:
for {
switch token = p.peek(); token.typ {
case itemLooseItem, itemListItem:
list.append(p.parseListItem())
default:
break Loop
}
}
return list
}
// parse listItem
func (p *parse) parseListItem() *ListItemNode {
token := p.next()
item := p.newListItem(token.pos)
token.val = strings.TrimSpace(token.val)
if p.isTaskItem(token.val) {
item.Nodes = p.parseTaskItem(token)
return item
}
tr := &parse{lex: lex(token.val), tr: p}
tr.parse()
for _, node := range tr.Nodes {
// wrap with paragraph only when it's a loose item
if n, ok := node.(*ParagraphNode); ok && token.typ == itemListItem {
item.Nodes = append(item.Nodes, n.Nodes...)
} else {
item.append(node)
}
}
return item
}
// parseTaskItem parses list item as a task item.
func (p *parse) parseTaskItem(token item) []Node {
checkbox := p.newCheckbox(token.pos, token.val[1] == 'x')
token.val = strings.TrimSpace(token.val[3:])
return append([]Node{checkbox}, p.parseText(token.val)...)
}
// isTaskItem tests if the given string is list task item.
func (p *parse) isTaskItem(s string) bool {
if len(s) < 5 || s[0] != '[' || (s[1] != 'x' && s[1] != ' ') || s[2] != ']' {
return false
}
return "" != strings.TrimSpace(s[3:])
}
// parse table
func (p *parse) parseTable() *TableNode {
table := p.newTable(p.next().pos)
// Align [ None, Left, Right, ... ]
// Header [ Cells: [ ... ] ]
// Data: [ Rows: [ Cells: [ ... ] ] ]
rows := struct {
Align []AlignType
Header []item
Cells [][]item
}{}
Loop:
for i := 0; ; {
switch token := p.next(); token.typ {
case itemTableRow:
i++
if i > 2 {
rows.Cells = append(rows.Cells, []item{})
}
case itemTableCell:
// Header
if i == 1 {
rows.Header = append(rows.Header, token)
// Alignment
} else if i == 2 {
rows.Align = append(rows.Align, parseAlign(token.val))
// Data
} else {
pos := i - 3
rows.Cells[pos] = append(rows.Cells[pos], token)
}
default:
p.backup()
break Loop
}
}
// Tranform to nodes
table.append(p.parseCells(Header, rows.Header, rows.Align))
// Table body
for _, row := range rows.Cells {
table.append(p.parseCells(Data, row, rows.Align))
}
return table
}
// parse cells and return new row
func (p *parse) parseCells(kind int, items []item, align []AlignType) *RowNode {
var row *RowNode
for i, item := range items {
if i == 0 {
row = p.newRow(item.pos)
}
cell := p.newCell(item.pos, kind, align[i])
cell.Nodes = p.parseText(item.val)
row.append(cell)
}
return row
}
// Used to consume lines(itemText) for a continues paragraphs
func (p *parse) scanLines() (s string) {
for {
tkn := p.next()
if tkn.typ == itemText || tkn.typ == itemIndent {
s += tkn.val
} else if tkn.typ == itemNewLine {
if t := p.peek().typ; t != itemText && t != itemIndent {
p.backup2(tkn)
break
}
s += tkn.val
} else {
p.backup()
break
}
}
return
}
// get align-string and return the align type of it
func parseAlign(s string) (typ AlignType) {
sfx, pfx := strings.HasSuffix(s, ":"), strings.HasPrefix(s, ":")
switch {
case sfx && pfx:
typ = Center
case sfx:
typ = Right
case pfx:
typ = Left
}
return
}
// test if given string is digit
func isDigit(s string) bool {
r, _ := utf8.DecodeRuneInString(s)
return unicode.IsDigit(r)
}