vendor: Mega update all dependencies
GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4080
This commit is contained in:
281
vendor/github.com/xtaci/kcp-go/fec.go
generated
vendored
281
vendor/github.com/xtaci/kcp-go/fec.go
generated
vendored
@@ -15,35 +15,31 @@ const (
|
||||
)
|
||||
|
||||
type (
|
||||
// FEC defines forward error correction for packets
|
||||
FEC struct {
|
||||
rxlimit int // queue size limit
|
||||
dataShards int
|
||||
parityShards int
|
||||
shardSize int
|
||||
next uint32 // next seqid
|
||||
paws uint32 // Protect Against Wrapped Sequence numbers
|
||||
rx []fecPacket // ordered receive queue
|
||||
|
||||
// caches
|
||||
decodeCache [][]byte
|
||||
encodeCache [][]byte
|
||||
shardsflag []bool
|
||||
|
||||
// RS encoder
|
||||
enc reedsolomon.Encoder
|
||||
}
|
||||
|
||||
// fecPacket is a decoded FEC packet
|
||||
fecPacket struct {
|
||||
seqid uint32
|
||||
flag uint16
|
||||
data []byte
|
||||
ts uint32
|
||||
}
|
||||
|
||||
// FECDecoder for decoding incoming packets
|
||||
FECDecoder struct {
|
||||
rxlimit int // queue size limit
|
||||
dataShards int
|
||||
parityShards int
|
||||
shardSize int
|
||||
rx []fecPacket // ordered receive queue
|
||||
|
||||
// caches
|
||||
decodeCache [][]byte
|
||||
flagCache []bool
|
||||
|
||||
// RS decoder
|
||||
codec reedsolomon.Encoder
|
||||
}
|
||||
)
|
||||
|
||||
func newFEC(rxlimit, dataShards, parityShards int) *FEC {
|
||||
func newFECDecoder(rxlimit, dataShards, parityShards int) *FECDecoder {
|
||||
if dataShards <= 0 || parityShards <= 0 {
|
||||
return nil
|
||||
}
|
||||
@@ -51,29 +47,26 @@ func newFEC(rxlimit, dataShards, parityShards int) *FEC {
|
||||
return nil
|
||||
}
|
||||
|
||||
fec := new(FEC)
|
||||
fec := new(FECDecoder)
|
||||
fec.rxlimit = rxlimit
|
||||
fec.dataShards = dataShards
|
||||
fec.parityShards = parityShards
|
||||
fec.shardSize = dataShards + parityShards
|
||||
fec.paws = (0xffffffff/uint32(fec.shardSize) - 1) * uint32(fec.shardSize)
|
||||
enc, err := reedsolomon.New(dataShards, parityShards, reedsolomon.WithMaxGoroutines(1))
|
||||
if err != nil {
|
||||
return nil
|
||||
}
|
||||
fec.enc = enc
|
||||
fec.codec = enc
|
||||
fec.decodeCache = make([][]byte, fec.shardSize)
|
||||
fec.encodeCache = make([][]byte, fec.shardSize)
|
||||
fec.shardsflag = make([]bool, fec.shardSize)
|
||||
fec.flagCache = make([]bool, fec.shardSize)
|
||||
return fec
|
||||
}
|
||||
|
||||
// decodeBytes a fec packet
|
||||
func (fec *FEC) decodeBytes(data []byte) fecPacket {
|
||||
func (dec *FECDecoder) decodeBytes(data []byte) fecPacket {
|
||||
var pkt fecPacket
|
||||
pkt.seqid = binary.LittleEndian.Uint32(data)
|
||||
pkt.flag = binary.LittleEndian.Uint16(data[4:])
|
||||
pkt.ts = currentMs()
|
||||
// allocate memory & copy
|
||||
buf := xmitBuf.Get().([]byte)[:len(data)-6]
|
||||
copy(buf, data[6:])
|
||||
@@ -81,29 +74,16 @@ func (fec *FEC) decodeBytes(data []byte) fecPacket {
|
||||
return pkt
|
||||
}
|
||||
|
||||
func (fec *FEC) markData(data []byte) {
|
||||
binary.LittleEndian.PutUint32(data, fec.next)
|
||||
binary.LittleEndian.PutUint16(data[4:], typeData)
|
||||
fec.next++
|
||||
}
|
||||
|
||||
func (fec *FEC) markFEC(data []byte) {
|
||||
binary.LittleEndian.PutUint32(data, fec.next)
|
||||
binary.LittleEndian.PutUint16(data[4:], typeFEC)
|
||||
fec.next++
|
||||
fec.next %= fec.paws
|
||||
}
|
||||
|
||||
// Decode a fec packet
|
||||
func (fec *FEC) Decode(pkt fecPacket) (recovered [][]byte) {
|
||||
func (dec *FECDecoder) Decode(pkt fecPacket) (recovered [][]byte) {
|
||||
// insertion
|
||||
n := len(fec.rx) - 1
|
||||
n := len(dec.rx) - 1
|
||||
insertIdx := 0
|
||||
for i := n; i >= 0; i-- {
|
||||
if pkt.seqid == fec.rx[i].seqid { // de-duplicate
|
||||
if pkt.seqid == dec.rx[i].seqid { // de-duplicate
|
||||
xmitBuf.Put(pkt.data)
|
||||
return nil
|
||||
} else if _itimediff(pkt.seqid, fec.rx[i].seqid) > 0 { // insertion
|
||||
} else if _itimediff(pkt.seqid, dec.rx[i].seqid) > 0 { // insertion
|
||||
insertIdx = i + 1
|
||||
break
|
||||
}
|
||||
@@ -111,70 +91,65 @@ func (fec *FEC) Decode(pkt fecPacket) (recovered [][]byte) {
|
||||
|
||||
// insert into ordered rx queue
|
||||
if insertIdx == n+1 {
|
||||
fec.rx = append(fec.rx, pkt)
|
||||
dec.rx = append(dec.rx, pkt)
|
||||
} else {
|
||||
fec.rx = append(fec.rx, fecPacket{})
|
||||
copy(fec.rx[insertIdx+1:], fec.rx[insertIdx:])
|
||||
fec.rx[insertIdx] = pkt
|
||||
dec.rx = append(dec.rx, fecPacket{})
|
||||
copy(dec.rx[insertIdx+1:], dec.rx[insertIdx:]) // shift right
|
||||
dec.rx[insertIdx] = pkt
|
||||
}
|
||||
|
||||
// shard range for current packet
|
||||
shardBegin := pkt.seqid - pkt.seqid%uint32(fec.shardSize)
|
||||
shardEnd := shardBegin + uint32(fec.shardSize) - 1
|
||||
shardBegin := pkt.seqid - pkt.seqid%uint32(dec.shardSize)
|
||||
shardEnd := shardBegin + uint32(dec.shardSize) - 1
|
||||
|
||||
// max search range in ordered queue for current shard
|
||||
searchBegin := insertIdx - int(pkt.seqid%uint32(fec.shardSize))
|
||||
searchBegin := insertIdx - int(pkt.seqid%uint32(dec.shardSize))
|
||||
if searchBegin < 0 {
|
||||
searchBegin = 0
|
||||
}
|
||||
searchEnd := searchBegin + fec.shardSize - 1
|
||||
if searchEnd >= len(fec.rx) {
|
||||
searchEnd = len(fec.rx) - 1
|
||||
searchEnd := searchBegin + dec.shardSize - 1
|
||||
if searchEnd >= len(dec.rx) {
|
||||
searchEnd = len(dec.rx) - 1
|
||||
}
|
||||
|
||||
// re-construct datashards
|
||||
if searchEnd > searchBegin && searchEnd-searchBegin+1 >= fec.dataShards {
|
||||
numshard := 0
|
||||
numDataShard := 0
|
||||
first := -1
|
||||
maxlen := 0
|
||||
shards := fec.decodeCache
|
||||
shardsflag := fec.shardsflag
|
||||
for k := range fec.decodeCache {
|
||||
if searchEnd-searchBegin+1 >= dec.dataShards {
|
||||
var numshard, numDataShard, first, maxlen int
|
||||
|
||||
// zero cache
|
||||
shards := dec.decodeCache
|
||||
shardsflag := dec.flagCache
|
||||
for k := range dec.decodeCache {
|
||||
shards[k] = nil
|
||||
shardsflag[k] = false
|
||||
}
|
||||
|
||||
// shard assembly
|
||||
for i := searchBegin; i <= searchEnd; i++ {
|
||||
seqid := fec.rx[i].seqid
|
||||
seqid := dec.rx[i].seqid
|
||||
if _itimediff(seqid, shardEnd) > 0 {
|
||||
break
|
||||
} else if _itimediff(seqid, shardBegin) >= 0 {
|
||||
shards[seqid%uint32(fec.shardSize)] = fec.rx[i].data
|
||||
shardsflag[seqid%uint32(fec.shardSize)] = true
|
||||
shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data
|
||||
shardsflag[seqid%uint32(dec.shardSize)] = true
|
||||
numshard++
|
||||
if fec.rx[i].flag == typeData {
|
||||
if dec.rx[i].flag == typeData {
|
||||
numDataShard++
|
||||
}
|
||||
if numshard == 1 {
|
||||
first = i
|
||||
}
|
||||
if len(fec.rx[i].data) > maxlen {
|
||||
maxlen = len(fec.rx[i].data)
|
||||
if len(dec.rx[i].data) > maxlen {
|
||||
maxlen = len(dec.rx[i].data)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if numDataShard == fec.dataShards { // no lost
|
||||
for i := first; i < first+numshard; i++ { // free
|
||||
xmitBuf.Put(fec.rx[i].data)
|
||||
}
|
||||
copy(fec.rx[first:], fec.rx[first+numshard:])
|
||||
for i := 0; i < numshard; i++ { // dereference
|
||||
fec.rx[len(fec.rx)-1-i] = fecPacket{}
|
||||
}
|
||||
fec.rx = fec.rx[:len(fec.rx)-numshard]
|
||||
} else if numshard >= fec.dataShards { // recoverable
|
||||
if numDataShard == dec.dataShards {
|
||||
// case 1: no lost data shards
|
||||
dec.rx = dec.freeRange(first, numshard, dec.rx)
|
||||
} else if numshard >= dec.dataShards {
|
||||
// case 2: data shard lost, but recoverable from parity shard
|
||||
for k := range shards {
|
||||
if shards[k] != nil {
|
||||
dlen := len(shards[k])
|
||||
@@ -182,49 +157,147 @@ func (fec *FEC) Decode(pkt fecPacket) (recovered [][]byte) {
|
||||
xorBytes(shards[k][dlen:], shards[k][dlen:], shards[k][dlen:])
|
||||
}
|
||||
}
|
||||
if err := fec.enc.Reconstruct(shards); err == nil {
|
||||
for k := range shards[:fec.dataShards] {
|
||||
if err := dec.codec.Reconstruct(shards); err == nil {
|
||||
for k := range shards[:dec.dataShards] {
|
||||
if !shardsflag[k] {
|
||||
recovered = append(recovered, shards[k])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for i := first; i < first+numshard; i++ { // free
|
||||
xmitBuf.Put(fec.rx[i].data)
|
||||
}
|
||||
copy(fec.rx[first:], fec.rx[first+numshard:])
|
||||
for i := 0; i < numshard; i++ { // dereference
|
||||
fec.rx[len(fec.rx)-1-i] = fecPacket{}
|
||||
}
|
||||
fec.rx = fec.rx[:len(fec.rx)-numshard]
|
||||
dec.rx = dec.freeRange(first, numshard, dec.rx)
|
||||
}
|
||||
}
|
||||
|
||||
// keep rxlimit
|
||||
if len(fec.rx) > fec.rxlimit {
|
||||
if fec.rx[0].flag == typeData { // record unrecoverable data
|
||||
if len(dec.rx) > dec.rxlimit {
|
||||
if dec.rx[0].flag == typeData { // record unrecoverable data
|
||||
atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
|
||||
}
|
||||
xmitBuf.Put(fec.rx[0].data) // free
|
||||
fec.rx[0].data = nil
|
||||
fec.rx = fec.rx[1:]
|
||||
dec.rx = dec.freeRange(0, 1, dec.rx)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Encode a group of datashards
|
||||
func (fec *FEC) Encode(data [][]byte, offset, maxlen int) (ecc [][]byte) {
|
||||
if len(data) != fec.shardSize {
|
||||
// free a range of fecPacket, and zero for GC recycling
|
||||
func (dec *FECDecoder) freeRange(first, n int, q []fecPacket) []fecPacket {
|
||||
for i := first; i < first+n; i++ { // free
|
||||
xmitBuf.Put(q[i].data)
|
||||
}
|
||||
copy(q[first:], q[first+n:])
|
||||
for i := 0; i < n; i++ { // dereference data
|
||||
q[len(q)-1-i].data = nil
|
||||
}
|
||||
return q[:len(q)-n]
|
||||
}
|
||||
|
||||
type (
|
||||
// FECEncoder for encoding outgoing packets
|
||||
FECEncoder struct {
|
||||
dataShards int
|
||||
parityShards int
|
||||
shardSize int
|
||||
paws uint32 // Protect Against Wrapped Sequence numbers
|
||||
next uint32 // next seqid
|
||||
|
||||
shardCount int // count the number of datashards collected
|
||||
maxSize int // record maximum data length in datashard
|
||||
|
||||
headerOffset int // FEC header offset
|
||||
payloadOffset int // FEC payload offset
|
||||
|
||||
// caches
|
||||
shardCache [][]byte
|
||||
encodeCache [][]byte
|
||||
|
||||
// RS encoder
|
||||
codec reedsolomon.Encoder
|
||||
}
|
||||
)
|
||||
|
||||
func newFECEncoder(dataShards, parityShards, offset int) *FECEncoder {
|
||||
if dataShards <= 0 || parityShards <= 0 {
|
||||
return nil
|
||||
}
|
||||
shards := fec.encodeCache
|
||||
for k := range shards {
|
||||
shards[k] = data[k][offset:maxlen]
|
||||
fec := new(FECEncoder)
|
||||
fec.dataShards = dataShards
|
||||
fec.parityShards = parityShards
|
||||
fec.shardSize = dataShards + parityShards
|
||||
fec.paws = (0xffffffff/uint32(fec.shardSize) - 1) * uint32(fec.shardSize)
|
||||
fec.headerOffset = offset
|
||||
fec.payloadOffset = fec.headerOffset + fecHeaderSize
|
||||
|
||||
enc, err := reedsolomon.New(dataShards, parityShards, reedsolomon.WithMaxGoroutines(1))
|
||||
if err != nil {
|
||||
return nil
|
||||
}
|
||||
fec.codec = enc
|
||||
|
||||
// caches
|
||||
fec.encodeCache = make([][]byte, fec.shardSize)
|
||||
fec.shardCache = make([][]byte, fec.shardSize)
|
||||
for k := range fec.shardCache {
|
||||
fec.shardCache[k] = make([]byte, mtuLimit)
|
||||
}
|
||||
return fec
|
||||
}
|
||||
|
||||
// Encode the packet, output parity shards if we have enough datashards
|
||||
// the content of returned parityshards will change in next Encode
|
||||
func (enc *FECEncoder) Encode(b []byte) (ps [][]byte) {
|
||||
enc.markData(b[enc.headerOffset:])
|
||||
binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))
|
||||
|
||||
// copy data to fec datashards
|
||||
sz := len(b)
|
||||
enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
|
||||
copy(enc.shardCache[enc.shardCount], b)
|
||||
enc.shardCount++
|
||||
|
||||
// record max datashard length
|
||||
if sz > enc.maxSize {
|
||||
enc.maxSize = sz
|
||||
}
|
||||
|
||||
if err := fec.enc.Encode(shards); err != nil {
|
||||
return nil
|
||||
// calculate Reed-Solomon Erasure Code
|
||||
if enc.shardCount == enc.dataShards {
|
||||
// bzero each datashard's tail
|
||||
for i := 0; i < enc.dataShards; i++ {
|
||||
shard := enc.shardCache[i]
|
||||
slen := len(shard)
|
||||
xorBytes(shard[slen:enc.maxSize], shard[slen:enc.maxSize], shard[slen:enc.maxSize])
|
||||
}
|
||||
|
||||
// construct equal-sized slice with stripped header
|
||||
cache := enc.encodeCache
|
||||
for k := range cache {
|
||||
cache[k] = enc.shardCache[k][enc.payloadOffset:enc.maxSize]
|
||||
}
|
||||
|
||||
// rs encode
|
||||
if err := enc.codec.Encode(cache); err == nil {
|
||||
ps = enc.shardCache[enc.dataShards:]
|
||||
for k := range ps {
|
||||
enc.markFEC(ps[k][enc.headerOffset:])
|
||||
ps[k] = ps[k][:enc.maxSize]
|
||||
}
|
||||
}
|
||||
|
||||
// reset counters to zero
|
||||
enc.shardCount = 0
|
||||
enc.maxSize = 0
|
||||
}
|
||||
return data[fec.dataShards:]
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (enc *FECEncoder) markData(data []byte) {
|
||||
binary.LittleEndian.PutUint32(data, enc.next)
|
||||
binary.LittleEndian.PutUint16(data[4:], typeData)
|
||||
enc.next++
|
||||
}
|
||||
|
||||
func (enc *FECEncoder) markFEC(data []byte) {
|
||||
binary.LittleEndian.PutUint32(data, enc.next)
|
||||
binary.LittleEndian.PutUint16(data[4:], typeFEC)
|
||||
enc.next = (enc.next + 1) % enc.paws
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user