vendor: Update github.com/xtaci/kcp
This commit is contained in:
204
vendor/github.com/klauspost/reedsolomon/README.md
generated
vendored
204
vendor/github.com/klauspost/reedsolomon/README.md
generated
vendored
@@ -1,204 +0,0 @@
|
||||
# Reed-Solomon
|
||||
[![GoDoc][1]][2] [![Build Status][3]][4]
|
||||
|
||||
[1]: https://godoc.org/github.com/klauspost/reedsolomon?status.svg
|
||||
[2]: https://godoc.org/github.com/klauspost/reedsolomon
|
||||
[3]: https://travis-ci.org/klauspost/reedsolomon.svg?branch=master
|
||||
[4]: https://travis-ci.org/klauspost/reedsolomon
|
||||
|
||||
Reed-Solomon Erasure Coding in Go, with speeds exceeding 1GB/s/cpu core implemented in pure Go.
|
||||
|
||||
This is a golang port of the [JavaReedSolomon](https://github.com/Backblaze/JavaReedSolomon) library released by [Backblaze](http://backblaze.com), with some additional optimizations.
|
||||
|
||||
For an introduction on erasure coding, see the post on the [Backblaze blog](https://www.backblaze.com/blog/reed-solomon/).
|
||||
|
||||
Package home: https://github.com/klauspost/reedsolomon
|
||||
|
||||
Godoc: https://godoc.org/github.com/klauspost/reedsolomon
|
||||
|
||||
# Installation
|
||||
To get the package use the standard:
|
||||
```bash
|
||||
go get github.com/klauspost/reedsolomon
|
||||
```
|
||||
|
||||
# Usage
|
||||
|
||||
This section assumes you know the basics of Reed-Solomon encoding. A good start is this [Backblaze blog post](https://www.backblaze.com/blog/reed-solomon/).
|
||||
|
||||
This package performs the calculation of the parity sets. The usage is therefore relatively simple.
|
||||
|
||||
First of all, you need to choose your distribution of data and parity shards. A 'good' distribution is very subjective, and will depend a lot on your usage scenario. A good starting point is above 5 and below 257 data shards (the maximum supported number), and the number of parity shards to be 2 or above, and below the number of data shards.
|
||||
|
||||
To create an encoder with 10 data shards (where your data goes) and 3 parity shards (calculated):
|
||||
```Go
|
||||
enc, err := reedsolomon.New(10, 3)
|
||||
```
|
||||
This encoder will work for all parity sets with this distribution of data and parity shards. The error will only be set if you specify 0 or negative values in any of the parameters, or if you specify more than 256 data shards.
|
||||
|
||||
The you send and receive data is a simple slice of byte slices; `[][]byte`. In the example above, the top slice must have a length of 13.
|
||||
```Go
|
||||
data := make([][]byte, 13)
|
||||
```
|
||||
You should then fill the 10 first slices with *equally sized* data, and create parity shards that will be populated with parity data. In this case we create the data in memory, but you could for instance also use [mmap](https://github.com/edsrzf/mmap-go) to map files.
|
||||
|
||||
```Go
|
||||
// Create all shards, size them at 50000 each
|
||||
for i := range input {
|
||||
data[i] := make([]byte, 50000)
|
||||
}
|
||||
|
||||
|
||||
// Fill some data into the data shards
|
||||
for i, in := range data[:10] {
|
||||
for j:= range in {
|
||||
in[j] = byte((i+j)&0xff)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
To populate the parity shards, you simply call `Encode()` with your data.
|
||||
```Go
|
||||
err = enc.Encode(data)
|
||||
```
|
||||
The only cases where you should get an error is, if the data shards aren't of equal size. The last 3 shards now contain parity data. You can verify this by calling `Verify()`:
|
||||
|
||||
```Go
|
||||
ok, err = enc.Verify(data)
|
||||
```
|
||||
|
||||
The final (and important) part is to be able to reconstruct missing shards. For this to work, you need to know which parts of your data is missing. The encoder *does not know which parts are invalid*, so if data corruption is a likely scenario, you need to implement a hash check for each shard. If a byte has changed in your set, and you don't know which it is, there is no way to reconstruct the data set.
|
||||
|
||||
To indicate missing data, you set the shard to nil before calling `Reconstruct()`:
|
||||
|
||||
```Go
|
||||
// Delete two data shards
|
||||
data[3] = nil
|
||||
data[7] = nil
|
||||
|
||||
// Reconstruct the missing shards
|
||||
err := enc.Reconstruct(data)
|
||||
```
|
||||
The missing data and parity shards will be recreated. If more than 3 shards are missing, the reconstruction will fail.
|
||||
|
||||
So to sum up reconstruction:
|
||||
* The number of data/parity shards must match the numbers used for encoding.
|
||||
* The order of shards must be the same as used when encoding.
|
||||
* You may only supply data you know is valid.
|
||||
* Invalid shards should be set to nil.
|
||||
|
||||
For complete examples of an encoder and decoder see the [examples folder](https://github.com/klauspost/reedsolomon/tree/master/examples).
|
||||
|
||||
# Splitting/Joining Data
|
||||
|
||||
You might have a large slice of data. To help you split this, there are some helper functions that can split and join a single byte slice.
|
||||
|
||||
```Go
|
||||
bigfile, _ := ioutil.Readfile("myfile.data")
|
||||
|
||||
// Split the file
|
||||
split, err := enc.Split(bigfile)
|
||||
```
|
||||
This will split the file into the number of data shards set when creating the encoder and create empty parity shards.
|
||||
|
||||
An important thing to note is that you have to *keep track of the exact input size*. If the size of the input isn't diviable by the number of data shards, extra zeros will be inserted in the last shard.
|
||||
|
||||
To join a data set, use the `Join()` function, which will join the shards and write it to the `io.Writer` you supply:
|
||||
```Go
|
||||
// Join a data set and write it to io.Discard.
|
||||
err = enc.Join(io.Discard, data, len(bigfile))
|
||||
```
|
||||
|
||||
# Streaming/Merging
|
||||
|
||||
It might seem like a limitation that all data should be in memory, but an important property is that *as long as the number of data/parity shards are the same, you can merge/split data sets*, and they will remain valid as a separate set.
|
||||
|
||||
```Go
|
||||
// Split the data set of 50000 elements into two of 25000
|
||||
splitA := make([][]byte, 13)
|
||||
splitB := make([][]byte, 13)
|
||||
|
||||
// Merge into a 100000 element set
|
||||
merged := make([][]byte, 13)
|
||||
|
||||
for i := range data {
|
||||
splitA[i] = data[i][:25000]
|
||||
splitB[i] = data[i][25000:]
|
||||
|
||||
// Concencate it to itself
|
||||
merged[i] = append(make([]byte, 0, len(data[i])*2), data[i]...)
|
||||
merged[i] = append(merged[i], data[i]...)
|
||||
}
|
||||
|
||||
// Each part should still verify as ok.
|
||||
ok, err := enc.Verify(splitA)
|
||||
if ok && err == nil {
|
||||
log.Println("splitA ok")
|
||||
}
|
||||
|
||||
ok, err = enc.Verify(splitB)
|
||||
if ok && err == nil {
|
||||
log.Println("splitB ok")
|
||||
}
|
||||
|
||||
ok, err = enc.Verify(merge)
|
||||
if ok && err == nil {
|
||||
log.Println("merge ok")
|
||||
}
|
||||
```
|
||||
|
||||
This means that if you have a data set that may not fit into memory, you can split processing into smaller blocks. For the best throughput, don't use too small blocks.
|
||||
|
||||
This also means that you can divide big input up into smaller blocks, and do reconstruction on parts of your data. This doesn't give the same flexibility of a higher number of data shards, but it will be much more performant.
|
||||
|
||||
# Streaming API
|
||||
|
||||
There has been added a fully streaming API, to help perform fully streaming operations, which enables you to do the same operations, but on streams. To use the stream API, use [`NewStream`](https://godoc.org/github.com/klauspost/reedsolomon#NewStream) function to create the encoding/decoding interfaces. You can use [`NewStreamC`](https://godoc.org/github.com/klauspost/reedsolomon#NewStreamC) to ready an interface that reads/writes concurrently from the streams.
|
||||
|
||||
Input is delivered as `[]io.Reader`, output as `[]io.Writer`, and functionality corresponds to the in-memory API. Each stream must supply the same amount of data, similar to how each slice must be similar size with the in-memory API.
|
||||
If an error occurs in relation to a stream, a [`StreamReadError`](https://godoc.org/github.com/klauspost/reedsolomon#StreamReadError) or [`StreamWriteError`](https://godoc.org/github.com/klauspost/reedsolomon#StreamWriteError) will help you determine which stream was the offender.
|
||||
|
||||
There is no buffering or timeouts/retry specified. If you want to add that, you need to add it to the Reader/Writer.
|
||||
|
||||
For complete examples of a streaming encoder and decoder see the [examples folder](https://github.com/klauspost/reedsolomon/tree/master/examples).
|
||||
|
||||
|
||||
# Performance
|
||||
Performance depends mainly on the number of parity shards. In rough terms, doubling the number of parity shards will double the encoding time.
|
||||
|
||||
Here are the throughput numbers with some different selections of data and parity shards. For reference each shard is 1MB random data, and 2 CPU cores are used for encoding.
|
||||
|
||||
| Data | Parity | Parity | MB/s | SSSE3 MB/s | SSSE3 Speed | Rel. Speed |
|
||||
|------|--------|--------|--------|-------------|-------------|------------|
|
||||
| 5 | 2 | 40% | 576,11 | 2599,2 | 451% | 100,00% |
|
||||
| 10 | 2 | 20% | 587,73 | 3100,28 | 528% | 102,02% |
|
||||
| 10 | 4 | 40% | 298,38 | 2470,97 | 828% | 51,79% |
|
||||
| 50 | 20 | 40% | 59,81 | 713,28 | 1193% | 10,38% |
|
||||
|
||||
If `runtime.GOMAXPROCS()` is set to a value higher than 1, the encoder will use multiple goroutines to perform the calculations in `Verify`, `Encode` and `Reconstruct`.
|
||||
|
||||
Example of performance scaling on Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz - 4 physical cores, 8 logical cores. The example uses 10 blocks with 16MB data each and 4 parity blocks.
|
||||
|
||||
| Threads | MB/s | Speed |
|
||||
|---------|---------|-------|
|
||||
| 1 | 1355,11 | 100% |
|
||||
| 2 | 2339,78 | 172% |
|
||||
| 4 | 3179,33 | 235% |
|
||||
| 8 | 4346,18 | 321% |
|
||||
|
||||
# asm2plan9s
|
||||
|
||||
[asm2plan9s](https://github.com/fwessels/asm2plan9s) is used for assembling the AVX2 instructions into their BYTE/WORD/LONG equivalents.
|
||||
|
||||
# Links
|
||||
* [Backblaze Open Sources Reed-Solomon Erasure Coding Source Code](https://www.backblaze.com/blog/reed-solomon/).
|
||||
* [JavaReedSolomon](https://github.com/Backblaze/JavaReedSolomon). Compatible java library by Backblaze.
|
||||
* [reedsolomon-c](https://github.com/jannson/reedsolomon-c). C version, compatible with output from this package.
|
||||
* [Reed-Solomon Erasure Coding in Haskell](https://github.com/NicolasT/reedsolomon). Haskell port of the package with similar performance.
|
||||
* [go-erasure](https://github.com/somethingnew2-0/go-erasure). A similar library using cgo, slower in my tests.
|
||||
* [rsraid](https://github.com/goayame/rsraid). A similar library written in Go. Slower, but supports more shards.
|
||||
* [Screaming Fast Galois Field Arithmetic](http://www.snia.org/sites/default/files2/SDC2013/presentations/NewThinking/EthanMiller_Screaming_Fast_Galois_Field%20Arithmetic_SIMD%20Instructions.pdf). Basis for SSE3 optimizations.
|
||||
|
||||
# License
|
||||
|
||||
This code, as the original [JavaReedSolomon](https://github.com/Backblaze/JavaReedSolomon) is published under an MIT license. See LICENSE file for more information.
|
||||
20
vendor/github.com/klauspost/reedsolomon/appveyor.yml
generated
vendored
20
vendor/github.com/klauspost/reedsolomon/appveyor.yml
generated
vendored
@@ -1,20 +0,0 @@
|
||||
os: Visual Studio 2015
|
||||
|
||||
platform: x64
|
||||
|
||||
clone_folder: c:\gopath\src\github.com\klauspost\reedsolomon
|
||||
|
||||
# environment variables
|
||||
environment:
|
||||
GOPATH: c:\gopath
|
||||
|
||||
install:
|
||||
- echo %PATH%
|
||||
- echo %GOPATH%
|
||||
- go version
|
||||
- go env
|
||||
- go get -d ./...
|
||||
|
||||
build_script:
|
||||
- go test -v -cpu=2 ./...
|
||||
- go test -cpu=1,2,4 -short -race ./...
|
||||
45
vendor/github.com/klauspost/reedsolomon/examples/README.md
generated
vendored
45
vendor/github.com/klauspost/reedsolomon/examples/README.md
generated
vendored
@@ -1,45 +0,0 @@
|
||||
# Examples
|
||||
|
||||
This folder contains usage examples of the Reed-Solomon encoder.
|
||||
|
||||
# Simple Encoder/Decoder
|
||||
|
||||
Shows basic use of the encoder, and will encode a single file into a number of
|
||||
data and parity shards. This is meant as an example and is not meant for production use
|
||||
since there is a number of shotcomings noted below.
|
||||
|
||||
To build an executable use:
|
||||
|
||||
```bash
|
||||
go build simple-decoder.go
|
||||
go build simple-encoder.go
|
||||
```
|
||||
|
||||
# Streamin API examples
|
||||
|
||||
There are streaming examples of the same functionality, which streams data instead of keeping it in memory.
|
||||
|
||||
To build the executables use:
|
||||
|
||||
```bash
|
||||
go build stream-decoder.go
|
||||
go build stream-encoder.go
|
||||
```
|
||||
|
||||
## Shortcomings
|
||||
* If the file size of the input isn't diviable by the number of data shards
|
||||
the output will contain extra zeroes
|
||||
* If the shard numbers isn't the same for the decoder as in the
|
||||
encoder, invalid output will be generated.
|
||||
* If values have changed in a shard, it cannot be reconstructed.
|
||||
* If two shards have been swapped, reconstruction will always fail.
|
||||
You need to supply the shards in the same order as they were given to you.
|
||||
|
||||
The solution for this is to save a metadata file containing:
|
||||
|
||||
* File size.
|
||||
* The number of data/parity shards.
|
||||
* HASH of each shard.
|
||||
* Order of the shards.
|
||||
|
||||
If you save these properties, you should abe able to detect file corruption in a shard and be able to reconstruct your data if you have the needed number of shards left.
|
||||
16
vendor/github.com/klauspost/reedsolomon/galois_amd64.go
generated
vendored
16
vendor/github.com/klauspost/reedsolomon/galois_amd64.go
generated
vendored
@@ -5,10 +5,6 @@
|
||||
|
||||
package reedsolomon
|
||||
|
||||
import (
|
||||
"github.com/klauspost/cpuid"
|
||||
)
|
||||
|
||||
//go:noescape
|
||||
func galMulSSSE3(low, high, in, out []byte)
|
||||
|
||||
@@ -40,12 +36,12 @@ func galMulSSSE3Xor(low, high, in, out []byte) {
|
||||
}
|
||||
*/
|
||||
|
||||
func galMulSlice(c byte, in, out []byte) {
|
||||
func galMulSlice(c byte, in, out []byte, ssse3, avx2 bool) {
|
||||
var done int
|
||||
if cpuid.CPU.AVX2() {
|
||||
if avx2 {
|
||||
galMulAVX2(mulTableLow[c][:], mulTableHigh[c][:], in, out)
|
||||
done = (len(in) >> 5) << 5
|
||||
} else if cpuid.CPU.SSSE3() {
|
||||
} else if ssse3 {
|
||||
galMulSSSE3(mulTableLow[c][:], mulTableHigh[c][:], in, out)
|
||||
done = (len(in) >> 4) << 4
|
||||
}
|
||||
@@ -58,12 +54,12 @@ func galMulSlice(c byte, in, out []byte) {
|
||||
}
|
||||
}
|
||||
|
||||
func galMulSliceXor(c byte, in, out []byte) {
|
||||
func galMulSliceXor(c byte, in, out []byte, ssse3, avx2 bool) {
|
||||
var done int
|
||||
if cpuid.CPU.AVX2() {
|
||||
if avx2 {
|
||||
galMulAVX2Xor(mulTableLow[c][:], mulTableHigh[c][:], in, out)
|
||||
done = (len(in) >> 5) << 5
|
||||
} else if cpuid.CPU.SSSE3() {
|
||||
} else if ssse3 {
|
||||
galMulSSSE3Xor(mulTableLow[c][:], mulTableHigh[c][:], in, out)
|
||||
done = (len(in) >> 4) << 4
|
||||
}
|
||||
|
||||
4
vendor/github.com/klauspost/reedsolomon/galois_noasm.go
generated
vendored
4
vendor/github.com/klauspost/reedsolomon/galois_noasm.go
generated
vendored
@@ -4,14 +4,14 @@
|
||||
|
||||
package reedsolomon
|
||||
|
||||
func galMulSlice(c byte, in, out []byte) {
|
||||
func galMulSlice(c byte, in, out []byte, ssse3, avx2 bool) {
|
||||
mt := mulTable[c]
|
||||
for n, input := range in {
|
||||
out[n] = mt[input]
|
||||
}
|
||||
}
|
||||
|
||||
func galMulSliceXor(c byte, in, out []byte) {
|
||||
func galMulSliceXor(c byte, in, out []byte, ssse3, avx2 bool) {
|
||||
mt := mulTable[c]
|
||||
for n, input := range in {
|
||||
out[n] ^= mt[input]
|
||||
|
||||
4
vendor/github.com/klauspost/reedsolomon/galois_test.go
generated
vendored
4
vendor/github.com/klauspost/reedsolomon/galois_test.go
generated
vendored
@@ -131,13 +131,13 @@ func TestGalois(t *testing.T) {
|
||||
// Test slices (>16 entries to test assembler)
|
||||
in := []byte{0, 1, 2, 3, 4, 5, 6, 10, 50, 100, 150, 174, 201, 255, 99, 32, 67, 85}
|
||||
out := make([]byte, len(in))
|
||||
galMulSlice(25, in, out)
|
||||
galMulSlice(25, in, out, false, false)
|
||||
expect := []byte{0x0, 0x19, 0x32, 0x2b, 0x64, 0x7d, 0x56, 0xfa, 0xb8, 0x6d, 0xc7, 0x85, 0xc3, 0x1f, 0x22, 0x7, 0x25, 0xfe}
|
||||
if 0 != bytes.Compare(out, expect) {
|
||||
t.Errorf("got %#v, expected %#v", out, expect)
|
||||
}
|
||||
|
||||
galMulSlice(177, in, out)
|
||||
galMulSlice(177, in, out, false, false)
|
||||
expect = []byte{0x0, 0xb1, 0x7f, 0xce, 0xfe, 0x4f, 0x81, 0x9e, 0x3, 0x6, 0xe8, 0x75, 0xbd, 0x40, 0x36, 0xa3, 0x95, 0xcb}
|
||||
if 0 != bytes.Compare(out, expect) {
|
||||
t.Errorf("got %#v, expected %#v", out, expect)
|
||||
|
||||
67
vendor/github.com/klauspost/reedsolomon/options.go
generated
vendored
Normal file
67
vendor/github.com/klauspost/reedsolomon/options.go
generated
vendored
Normal file
@@ -0,0 +1,67 @@
|
||||
package reedsolomon
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
|
||||
"github.com/klauspost/cpuid"
|
||||
)
|
||||
|
||||
// Option allows to override processing parameters.
|
||||
type Option func(*options)
|
||||
|
||||
type options struct {
|
||||
maxGoroutines int
|
||||
minSplitSize int
|
||||
useAVX2, useSSSE3 bool
|
||||
}
|
||||
|
||||
var defaultOptions = options{
|
||||
maxGoroutines: 50,
|
||||
minSplitSize: 512,
|
||||
}
|
||||
|
||||
func init() {
|
||||
if runtime.GOMAXPROCS(0) <= 1 {
|
||||
defaultOptions.maxGoroutines = 1
|
||||
}
|
||||
// Detect CPU capabilities.
|
||||
defaultOptions.useSSSE3 = cpuid.CPU.SSSE3()
|
||||
defaultOptions.useAVX2 = cpuid.CPU.AVX2()
|
||||
}
|
||||
|
||||
// WithMaxGoroutines is the maximum number of goroutines number for encoding & decoding.
|
||||
// Jobs will be split into this many parts, unless each goroutine would have to process
|
||||
// less than minSplitSize bytes (set with WithMinSplitSize).
|
||||
// For the best speed, keep this well above the GOMAXPROCS number for more fine grained
|
||||
// scheduling.
|
||||
// If n <= 0, it is ignored.
|
||||
func WithMaxGoroutines(n int) Option {
|
||||
return func(o *options) {
|
||||
if n > 0 {
|
||||
o.maxGoroutines = n
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MinSplitSize Is the minimum encoding size in bytes per goroutine.
|
||||
// See WithMaxGoroutines on how jobs are split.
|
||||
// If n <= 0, it is ignored.
|
||||
func WithMinSplitSize(n int) Option {
|
||||
return func(o *options) {
|
||||
if n > 0 {
|
||||
o.maxGoroutines = n
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func withSSE3(enabled bool) Option {
|
||||
return func(o *options) {
|
||||
o.useSSSE3 = enabled
|
||||
}
|
||||
}
|
||||
|
||||
func withAVX2(enabled bool) Option {
|
||||
return func(o *options) {
|
||||
o.useAVX2 = enabled
|
||||
}
|
||||
}
|
||||
61
vendor/github.com/klauspost/reedsolomon/reedsolomon.go
generated
vendored
61
vendor/github.com/klauspost/reedsolomon/reedsolomon.go
generated
vendored
@@ -15,7 +15,6 @@ import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"io"
|
||||
"runtime"
|
||||
"sync"
|
||||
)
|
||||
|
||||
@@ -83,6 +82,7 @@ type reedSolomon struct {
|
||||
m matrix
|
||||
tree inversionTree
|
||||
parity [][]byte
|
||||
o options
|
||||
}
|
||||
|
||||
// ErrInvShardNum will be returned by New, if you attempt to create
|
||||
@@ -98,13 +98,18 @@ var ErrMaxShardNum = errors.New("cannot create Encoder with 255 or more data+par
|
||||
// the number of data shards and parity shards that
|
||||
// you want to use. You can reuse this encoder.
|
||||
// Note that the maximum number of data shards is 256.
|
||||
func New(dataShards, parityShards int) (Encoder, error) {
|
||||
// If no options are supplied, default options are used.
|
||||
func New(dataShards, parityShards int, opts ...Option) (Encoder, error) {
|
||||
r := reedSolomon{
|
||||
DataShards: dataShards,
|
||||
ParityShards: parityShards,
|
||||
Shards: dataShards + parityShards,
|
||||
o: defaultOptions,
|
||||
}
|
||||
|
||||
for _, opt := range opts {
|
||||
opt(&r.o)
|
||||
}
|
||||
if dataShards <= 0 || parityShards <= 0 {
|
||||
return nil, ErrInvShardNum
|
||||
}
|
||||
@@ -201,7 +206,7 @@ func (r reedSolomon) Verify(shards [][]byte) (bool, error) {
|
||||
// number of matrix rows used, is determined by
|
||||
// outputCount, which is the number of outputs to compute.
|
||||
func (r reedSolomon) codeSomeShards(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
||||
if runtime.GOMAXPROCS(0) > 1 && len(inputs[0]) > minSplitSize {
|
||||
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
||||
r.codeSomeShardsP(matrixRows, inputs, outputs, outputCount, byteCount)
|
||||
return
|
||||
}
|
||||
@@ -209,26 +214,21 @@ func (r reedSolomon) codeSomeShards(matrixRows, inputs, outputs [][]byte, output
|
||||
in := inputs[c]
|
||||
for iRow := 0; iRow < outputCount; iRow++ {
|
||||
if c == 0 {
|
||||
galMulSlice(matrixRows[iRow][c], in, outputs[iRow])
|
||||
galMulSlice(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
||||
} else {
|
||||
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow])
|
||||
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
minSplitSize = 512 // min split size per goroutine
|
||||
maxGoroutines = 50 // max goroutines number for encoding & decoding
|
||||
)
|
||||
|
||||
// Perform the same as codeSomeShards, but split the workload into
|
||||
// several goroutines.
|
||||
func (r reedSolomon) codeSomeShardsP(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
||||
var wg sync.WaitGroup
|
||||
do := byteCount / maxGoroutines
|
||||
if do < minSplitSize {
|
||||
do = minSplitSize
|
||||
do := byteCount / r.o.maxGoroutines
|
||||
if do < r.o.minSplitSize {
|
||||
do = r.o.minSplitSize
|
||||
}
|
||||
start := 0
|
||||
for start < byteCount {
|
||||
@@ -241,9 +241,9 @@ func (r reedSolomon) codeSomeShardsP(matrixRows, inputs, outputs [][]byte, outpu
|
||||
in := inputs[c]
|
||||
for iRow := 0; iRow < outputCount; iRow++ {
|
||||
if c == 0 {
|
||||
galMulSlice(matrixRows[iRow][c], in[start:stop], outputs[iRow][start:stop])
|
||||
galMulSlice(matrixRows[iRow][c], in[start:stop], outputs[iRow][start:stop], r.o.useSSSE3, r.o.useAVX2)
|
||||
} else {
|
||||
galMulSliceXor(matrixRows[iRow][c], in[start:stop], outputs[iRow][start:stop])
|
||||
galMulSliceXor(matrixRows[iRow][c], in[start:stop], outputs[iRow][start:stop], r.o.useSSSE3, r.o.useAVX2)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -258,13 +258,36 @@ func (r reedSolomon) codeSomeShardsP(matrixRows, inputs, outputs [][]byte, outpu
|
||||
// except this will check values and return
|
||||
// as soon as a difference is found.
|
||||
func (r reedSolomon) checkSomeShards(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
|
||||
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
||||
return r.checkSomeShardsP(matrixRows, inputs, toCheck, outputCount, byteCount)
|
||||
}
|
||||
outputs := make([][]byte, len(toCheck))
|
||||
for i := range outputs {
|
||||
outputs[i] = make([]byte, byteCount)
|
||||
}
|
||||
for c := 0; c < r.DataShards; c++ {
|
||||
in := inputs[c]
|
||||
for iRow := 0; iRow < outputCount; iRow++ {
|
||||
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
||||
}
|
||||
}
|
||||
|
||||
for i, calc := range outputs {
|
||||
if !bytes.Equal(calc, toCheck[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (r reedSolomon) checkSomeShardsP(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
|
||||
same := true
|
||||
var mu sync.RWMutex // For above
|
||||
|
||||
var wg sync.WaitGroup
|
||||
do := byteCount / maxGoroutines
|
||||
if do < minSplitSize {
|
||||
do = minSplitSize
|
||||
do := byteCount / r.o.maxGoroutines
|
||||
if do < r.o.minSplitSize {
|
||||
do = r.o.minSplitSize
|
||||
}
|
||||
start := 0
|
||||
for start < byteCount {
|
||||
@@ -287,7 +310,7 @@ func (r reedSolomon) checkSomeShards(matrixRows, inputs, toCheck [][]byte, outpu
|
||||
mu.RUnlock()
|
||||
in := inputs[c][start : start+do]
|
||||
for iRow := 0; iRow < outputCount; iRow++ {
|
||||
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow])
|
||||
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
73
vendor/github.com/klauspost/reedsolomon/reedsolomon_test.go
generated
vendored
73
vendor/github.com/klauspost/reedsolomon/reedsolomon_test.go
generated
vendored
@@ -14,9 +14,43 @@ import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
func testOpts() [][]Option {
|
||||
if !testing.Short() {
|
||||
return [][]Option{}
|
||||
}
|
||||
opts := [][]Option{
|
||||
{WithMaxGoroutines(1), WithMinSplitSize(500), withSSE3(false), withAVX2(false)},
|
||||
{WithMaxGoroutines(5000), WithMinSplitSize(50), withSSE3(false), withAVX2(false)},
|
||||
{WithMaxGoroutines(5000), WithMinSplitSize(500000), withSSE3(false), withAVX2(false)},
|
||||
{WithMaxGoroutines(1), WithMinSplitSize(500000), withSSE3(false), withAVX2(false)},
|
||||
}
|
||||
for _, o := range opts[:] {
|
||||
if defaultOptions.useSSSE3 {
|
||||
n := make([]Option, len(o), len(o)+1)
|
||||
copy(n, o)
|
||||
n = append(n, withSSE3(true))
|
||||
opts = append(opts, n)
|
||||
}
|
||||
if defaultOptions.useAVX2 {
|
||||
n := make([]Option, len(o), len(o)+1)
|
||||
copy(n, o)
|
||||
n = append(n, withAVX2(true))
|
||||
opts = append(opts, n)
|
||||
}
|
||||
}
|
||||
return opts
|
||||
}
|
||||
|
||||
func TestEncoding(t *testing.T) {
|
||||
testEncoding(t)
|
||||
for _, o := range testOpts() {
|
||||
testEncoding(t, o...)
|
||||
}
|
||||
}
|
||||
|
||||
func testEncoding(t *testing.T, o ...Option) {
|
||||
perShard := 50000
|
||||
r, err := New(10, 3)
|
||||
r, err := New(10, 3, o...)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -56,8 +90,15 @@ func TestEncoding(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestReconstruct(t *testing.T) {
|
||||
testReconstruct(t)
|
||||
for _, o := range testOpts() {
|
||||
testReconstruct(t, o...)
|
||||
}
|
||||
}
|
||||
|
||||
func testReconstruct(t *testing.T, o ...Option) {
|
||||
perShard := 50000
|
||||
r, err := New(10, 3)
|
||||
r, err := New(10, 3, o...)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -122,8 +163,15 @@ func TestReconstruct(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestVerify(t *testing.T) {
|
||||
testVerify(t)
|
||||
for _, o := range testOpts() {
|
||||
testVerify(t, o...)
|
||||
}
|
||||
}
|
||||
|
||||
func testVerify(t *testing.T, o ...Option) {
|
||||
perShard := 33333
|
||||
r, err := New(10, 4)
|
||||
r, err := New(10, 4, o...)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -536,14 +584,27 @@ func BenchmarkReconstructP10x4x16M(b *testing.B) {
|
||||
}
|
||||
|
||||
func TestEncoderReconstruct(t *testing.T) {
|
||||
testEncoderReconstruct(t)
|
||||
for _, o := range testOpts() {
|
||||
testEncoderReconstruct(t, o...)
|
||||
}
|
||||
}
|
||||
|
||||
func testEncoderReconstruct(t *testing.T, o ...Option) {
|
||||
// Create some sample data
|
||||
var data = make([]byte, 250000)
|
||||
fillRandom(data)
|
||||
|
||||
// Create 5 data slices of 50000 elements each
|
||||
enc, _ := New(5, 3)
|
||||
shards, _ := enc.Split(data)
|
||||
err := enc.Encode(shards)
|
||||
enc, err := New(5, 3, o...)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
shards, err := enc.Split(data)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
err = enc.Encode(shards)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
8
vendor/github.com/klauspost/reedsolomon/streaming.go
generated
vendored
8
vendor/github.com/klauspost/reedsolomon/streaming.go
generated
vendored
@@ -145,8 +145,8 @@ type rsStream struct {
|
||||
// the number of data shards and parity shards that
|
||||
// you want to use. You can reuse this encoder.
|
||||
// Note that the maximum number of data shards is 256.
|
||||
func NewStream(dataShards, parityShards int) (StreamEncoder, error) {
|
||||
enc, err := New(dataShards, parityShards)
|
||||
func NewStream(dataShards, parityShards int, o ...Option) (StreamEncoder, error) {
|
||||
enc, err := New(dataShards, parityShards, o...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -161,8 +161,8 @@ func NewStream(dataShards, parityShards int) (StreamEncoder, error) {
|
||||
// the number of data shards and parity shards given.
|
||||
//
|
||||
// This functions as 'NewStream', but allows you to enable CONCURRENT reads and writes.
|
||||
func NewStreamC(dataShards, parityShards int, conReads, conWrites bool) (StreamEncoder, error) {
|
||||
enc, err := New(dataShards, parityShards)
|
||||
func NewStreamC(dataShards, parityShards int, conReads, conWrites bool, o ...Option) (StreamEncoder, error) {
|
||||
enc, err := New(dataShards, parityShards, o...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user