vendor: Update everything

GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4620
This commit is contained in:
Jakob Borg
2017-12-29 11:38:00 +00:00
parent 1296a22069
commit c24bf7ea55
1070 changed files with 294926 additions and 488191 deletions

View File

@@ -0,0 +1,318 @@
// Copyright (c) 2014, Alexander Neumann <alexander@bumpern.de>
// Copyright (c) 2017, Christophe-Marie Duquesne <chmd@chmd.fr>
//
// This file was adapted from restic https://github.com/restic/chunker
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package rabinkarp64
import (
"encoding/binary"
"errors"
"fmt"
"io"
"math/rand"
"strconv"
)
// Pol is a polynomial from F_2[X].
type Pol uint64
// Add returns x+y.
func (x Pol) Add(y Pol) Pol {
r := Pol(uint64(x) ^ uint64(y))
return r
}
// mulOverflows returns true if the multiplication would overflow uint64.
// Code by Rob Pike, see
// https://groups.google.com/d/msg/golang-nuts/h5oSN5t3Au4/KaNQREhZh0QJ
func mulOverflows(a, b Pol) bool {
if a <= 1 || b <= 1 {
return false
}
c := a.mul(b)
d := c.Div(b)
if d != a {
return true
}
return false
}
func (x Pol) mul(y Pol) Pol {
if x == 0 || y == 0 {
return 0
}
var res Pol
for i := 0; i <= y.Deg(); i++ {
if (y & (1 << uint(i))) > 0 {
res = res.Add(x << uint(i))
}
}
return res
}
// Mul returns x*y. When an overflow occurs, Mul panics.
func (x Pol) Mul(y Pol) Pol {
if mulOverflows(x, y) {
panic("multiplication would overflow uint64")
}
return x.mul(y)
}
// Deg returns the degree of the polynomial x. If x is zero, -1 is returned.
func (x Pol) Deg() int {
// the degree of 0 is -1
if x == 0 {
return -1
}
// see https://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
r := 0
if uint64(x)&0xffffffff00000000 > 0 {
x >>= 32
r |= 32
}
if uint64(x)&0xffff0000 > 0 {
x >>= 16
r |= 16
}
if uint64(x)&0xff00 > 0 {
x >>= 8
r |= 8
}
if uint64(x)&0xf0 > 0 {
x >>= 4
r |= 4
}
if uint64(x)&0xc > 0 {
x >>= 2
r |= 2
}
if uint64(x)&0x2 > 0 {
x >>= 1
r |= 1
}
return r
}
// String returns the coefficients in hex.
func (x Pol) String() string {
return "0x" + strconv.FormatUint(uint64(x), 16)
}
// Expand returns the string representation of the polynomial x.
func (x Pol) Expand() string {
if x == 0 {
return "0"
}
s := ""
for i := x.Deg(); i > 1; i-- {
if x&(1<<uint(i)) > 0 {
s += fmt.Sprintf("+x^%d", i)
}
}
if x&2 > 0 {
s += "+x"
}
if x&1 > 0 {
s += "+1"
}
return s[1:]
}
// DivMod returns x / d = q, and remainder r,
// see https://en.wikipedia.org/wiki/Division_algorithm
func (x Pol) DivMod(d Pol) (Pol, Pol) {
if x == 0 {
return 0, 0
}
if d == 0 {
panic("division by zero")
}
D := d.Deg()
diff := x.Deg() - D
if diff < 0 {
return 0, x
}
var q Pol
for diff >= 0 {
m := d << uint(diff)
q |= (1 << uint(diff))
x = x.Add(m)
diff = x.Deg() - D
}
return q, x
}
// Div returns the integer division result x / d.
func (x Pol) Div(d Pol) Pol {
q, _ := x.DivMod(d)
return q
}
// Mod returns the remainder of x / d
func (x Pol) Mod(d Pol) Pol {
_, r := x.DivMod(d)
return r
}
// I really dislike having a function that does not terminate, so specify a
// really large upper bound for finding a new irreducible polynomial, and
// return an error when no irreducible polynomial has been found within
// randPolMaxTries.
const randPolMaxTries = 1e6
// RandomPolynomial returns a new random irreducible polynomial
// of degree 53 using the input seed as a source.
// It is equivalent to calling DerivePolynomial(rand.Reader).
func RandomPolynomial(seed int64) (Pol, error) {
return DerivePolynomial(rand.New(rand.NewSource(seed)))
}
// DerivePolynomial returns an irreducible polynomial of degree 53
// (largest prime number below 64-8) by reading bytes from source.
// There are (2^53-2/53) irreducible polynomials of degree 53 in
// F_2[X], c.f. Michael O. Rabin (1981): "Fingerprinting by Random
// Polynomials", page 4. If no polynomial could be found in one
// million tries, an error is returned.
func DerivePolynomial(source io.Reader) (Pol, error) {
for i := 0; i < randPolMaxTries; i++ {
var f Pol
// choose polynomial at (pseudo)random
err := binary.Read(source, binary.LittleEndian, &f)
if err != nil {
return 0, err
}
// mask away bits above bit 53
f &= Pol((1 << 54) - 1)
// set highest and lowest bit so that the degree is 53 and the
// polynomial is not trivially reducible
f |= (1 << 53) | 1
// test if f is irreducible
if f.Irreducible() {
return f, nil
}
}
// If this is reached, we haven't found an irreducible polynomial in
// randPolMaxTries. This error is very unlikely to occur.
return 0, errors.New("unable to find new random irreducible polynomial")
}
// GCD computes the Greatest Common Divisor x and f.
func (x Pol) GCD(f Pol) Pol {
if f == 0 {
return x
}
if x == 0 {
return f
}
if x.Deg() < f.Deg() {
x, f = f, x
}
return f.GCD(x.Mod(f))
}
// Irreducible returns true iff x is irreducible over F_2. This function
// uses Ben Or's reducibility test.
//
// For details see "Tests and Constructions of Irreducible Polynomials over
// Finite Fields".
func (x Pol) Irreducible() bool {
for i := 1; i <= x.Deg()/2; i++ {
if x.GCD(qp(uint(i), x)) != 1 {
return false
}
}
return true
}
// MulMod computes x*f mod g
func (x Pol) MulMod(f, g Pol) Pol {
if x == 0 || f == 0 {
return 0
}
var res Pol
for i := 0; i <= f.Deg(); i++ {
if (f & (1 << uint(i))) > 0 {
a := x
for j := 0; j < i; j++ {
a = a.Mul(2).Mod(g)
}
res = res.Add(a).Mod(g)
}
}
return res
}
// qp computes the polynomial (x^(2^p)-x) mod g. This is needed for the
// reducibility test.
func qp(p uint, g Pol) Pol {
num := (1 << p)
i := 1
// start with x
res := Pol(2)
for i < num {
// repeatedly square res
res = res.MulMod(res, g)
i *= 2
}
// add x
return res.Add(2).Mod(g)
}

View File

@@ -0,0 +1,224 @@
// Copyright (c) 2014, Alexander Neumann <alexander@bumpern.de>
// Copyright (c) 2017, Christophe-Marie Duquesne <chmd@chmd.fr>
//
// This file was adapted from restic https://github.com/restic/chunker
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package rabinkarp64
import (
"sync"
"github.com/chmduquesne/rollinghash"
)
const Size = 8
type tables struct {
out [256]Pol
mod [256]Pol
}
// tables are cacheable for a given pol and windowsize
type index struct {
pol Pol
windowsize int
}
type RabinKarp64 struct {
pol Pol
tables *tables
polShift uint
value Pol
// window is treated like a circular buffer, where the oldest element
// is indicated by d.oldest
window []byte
oldest int
}
// cache precomputed tables, these are read-only anyway
var cache struct {
// For a given polynom and a given window size, we get a table
entries map[index]*tables
sync.Mutex
}
func init() {
cache.entries = make(map[index]*tables)
}
func (d *RabinKarp64) buildTables() {
windowsize := len(d.window)
idx := index{d.pol, windowsize}
cache.Lock()
t, ok := cache.entries[idx]
cache.Unlock()
if ok {
d.tables = t
return
}
t = &tables{}
// calculate table for sliding out bytes. The byte to slide out is used as
// the index for the table, the value contains the following:
// out_table[b] = Hash(b || 0 || ... || 0)
// \ windowsize-1 zero bytes /
// To slide out byte b_0 for window size w with known hash
// H := H(b_0 || ... || b_w), it is sufficient to add out_table[b_0]:
// H(b_0 || ... || b_w) + H(b_0 || 0 || ... || 0)
// = H(b_0 + b_0 || b_1 + 0 || ... || b_w + 0)
// = H( 0 || b_1 || ... || b_w)
//
// Afterwards a new byte can be shifted in.
for b := 0; b < 256; b++ {
var h Pol
h <<= 8
h |= Pol(b)
h = h.Mod(d.pol)
for i := 0; i < windowsize-1; i++ {
h <<= 8
h |= Pol(0)
h = h.Mod(d.pol)
}
t.out[b] = h
}
// calculate table for reduction mod Polynomial
k := d.pol.Deg()
for b := 0; b < 256; b++ {
// mod_table[b] = A | B, where A = (b(x) * x^k mod pol) and B = b(x) * x^k
//
// The 8 bits above deg(Polynomial) determine what happens next and so
// these bits are used as a lookup to this table. The value is split in
// two parts: Part A contains the result of the modulus operation, part
// B is used to cancel out the 8 top bits so that one XOR operation is
// enough to reduce modulo Polynomial
t.mod[b] = Pol(uint64(b)<<uint(k)).Mod(d.pol) | (Pol(b) << uint(k))
}
d.tables = t
cache.Lock()
cache.entries[idx] = d.tables
cache.Unlock()
}
// NewFromPol returns a RabinKarp64 digest from a polynomial over GF(2).
// It is assumed that the input polynomial is irreducible. You can obtain
// such a polynomial using the RandomPolynomial function.
func NewFromPol(p Pol) *RabinKarp64 {
res := &RabinKarp64{
pol: p,
tables: nil,
polShift: uint(p.Deg() - 8),
value: 0,
window: make([]byte, 0, rollinghash.DefaultWindowCap),
oldest: 0,
}
return res
}
// New returns a RabinKarp64 digest from the default polynomial obtained
// when using RandomPolynomial with the seed 1.
func New() *RabinKarp64 {
p, err := RandomPolynomial(1)
if err != nil {
panic(err)
}
return NewFromPol(p)
}
// Reset resets the running hash to its initial state
func (d *RabinKarp64) Reset() {
d.tables = nil
d.value = 0
d.window = d.window[:1]
d.window[0] = 0
d.oldest = 0
}
// Size is 8 bytes
func (d *RabinKarp64) Size() int { return Size }
// BlockSize is 1 byte
func (d *RabinKarp64) BlockSize() int { return 1 }
// Write (re)initializes the rolling window with the input byte slice and
// adds its data to the digest. It never returns an error.
func (d *RabinKarp64) Write(data []byte) (int, error) {
// Copy the window
l := len(data)
if l == 0 {
l = 1
}
if len(d.window) >= l {
d.window = d.window[:l]
} else {
d.window = make([]byte, l)
}
copy(d.window, data)
for _, b := range d.window {
d.value <<= 8
d.value |= Pol(b)
d.value = d.value.Mod(d.pol)
}
d.buildTables()
return len(d.window), nil
}
// Sum64 returns the hash as a uint64
func (d *RabinKarp64) Sum64() uint64 {
return uint64(d.value)
}
// Sum returns the hash as byte slice
func (d *RabinKarp64) Sum(b []byte) []byte {
v := d.Sum64()
return append(b, byte(v>>56), byte(v>>48), byte(v>>40), byte(v>>32), byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
}
// Roll updates the checksum of the window from the entering byte. You
// MUST initialize a window with Write() before calling this method.
func (d *RabinKarp64) Roll(c byte) {
// extract the entering/leaving bytes and update the circular buffer.
enter := c
leave := uint64(d.window[d.oldest])
d.window[d.oldest] = c
d.oldest += 1
if d.oldest >= len(d.window) {
d.oldest = 0
}
d.value ^= d.tables.out[leave]
index := byte(d.value >> d.polShift)
d.value <<= 8
d.value |= Pol(enter)
d.value ^= d.tables.mod[index]
}