alarmclock/arduino/alarmclock/alarmclock.cpp
2017-04-24 01:28:35 +02:00

535 lines
14 KiB
C++

#include <Arduino.h>
#define FASTLED_ESP8266_NODEMCU_PIN_ORDER
#include <FastLED.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include "alarmclock.h"
# TODO : tout reste à faire, ceci est la copie de mqttfastledmenu à adapter
// LED
// En déplaçant ces vars dans le .h + init dans le setup, cylon crash au moment du premier retour ?!
float brightness = LED_BRIGHTNESS_DEFAULT;
int color = LED_COLOR_DEFAULT;
int speed = LED_SPEED_DEFAULT;
CRGB leds[LED_NUM];
String ledEffect = LED_EFFECT_ERROR;
boolean ledState = false;
// WIFI
WiFiClient espClient;
// MQTT
char message_buff[100];
PubSubClient client(espClient);
void setup()
{
Serial.begin(SERIAL_SPEED);
Serial.println("\nresetting");
// WIFI
setupWifi();
// LED
/*
brightness = LED_BRIGHTNESS_DEFAULT;
color = LED_COLOR_DEFAULT;
speed = LED_SPEED_DEFAULT;
ledEffect = LED_EFFECT_ERROR;
ledState = false;
*/
LEDS.addLeds<LED_CHIPSET,LED_PIN, LED_COLOR_ORDER>(leds, LED_NUM).setCorrection(TypicalSMD5050);
ledBlackAll();
FastLED.setBrightness(brightness);
//////////////////////////////// ColorPalette ///////////////////////////////
currentPalette = RainbowColors_p;
currentBlending = LINEARBLEND;
//////////////////////////////// ColorPalette ///////////////////////////////
// MQTT
client.setServer(MQTT_SERVER, MQTT_PORT);
client.setCallback(callbackMQTT);
testConnectMQTT();
Serial.println("Ready");
/* MQTT
* Il est important de faire un loop avant toute chose,
* afin de récupérer les valeurs provenant du broker mqtt
* et pas démarrer avec de vieilles infos.
* Il faut un certains nombres de tentative pour tout récuperer.
*/
for (short int i = 0; i < 10; i++) {
delay(200);
client.loop();
}
Serial.println("End of setup");
}
// WIFI
void setupWifi()
{
Serial.print("Connexion a ");
Serial.print(WIFI_SSID);
WiFi.mode(WIFI_STA);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println(" OK");
Serial.print("IP : ");
Serial.println(WiFi.localIP());
}
// MQTT
void testConnectMQTT()
{
while (!client.connected()) {
Serial.print("Connexion au serveur MQTT... ");
if (client.connect("ESP8266Client", MQTT_USER, MQTT_PASS)) {
Serial.print("OK\nSend Current State");
mqttSendState();
mqttSendSpeedState();
mqttSendBrightnessState();
mqttSendEffectState();
mqttSendColorState();
Serial.print("OK\nSubscribe");
client.subscribe(MQTT_LED_COMMAND);
client.subscribe(MQTT_LED_EFFECT_COMMAND);
client.subscribe(MQTT_LED_BRIGHTNESS_COMMAND);
client.subscribe(MQTT_LED_SPEED_COMMAND);
client.subscribe(MQTT_LED_COLOR_COMMAND);
Serial.println(" OK");
} else {
Serial.print("KO, erreur : ");
Serial.print(client.state());
Serial.println(", on attend 5 secondes avant de recommencer");
delay(5000);
}
}
}
// Déclenche les actions à la réception d'un message
void callbackMQTT(char* topic, byte* payload, unsigned int length)
{
String stopic = String(topic);
unsigned int i = 0;
for(i = 0; i < length; i++) {
message_buff[i] = payload[i];
}
message_buff[i] = '\0';
String msgString = String(message_buff);
Serial.print("Received [" + stopic + "] : ");
Serial.println(msgString);
if (stopic == MQTT_LED_COMMAND) {
if (msgString == "ON") {
ledState = true;
} else {
ledState = false;
ledBlackAll();
}
mqttSendState();
} else if (stopic == MQTT_LED_EFFECT_COMMAND) {
// Si on ne repasse pas tout à noir, cela peut faire des effets surprenants
ledBlackAll();
ledEffect = msgString;
mqttSendEffectState();
} else if (stopic == MQTT_LED_BRIGHTNESS_COMMAND) {
brightness = msgString.toInt();
FastLED.setBrightness(brightness);
mqttSendBrightnessState();
} else if (stopic == MQTT_LED_COLOR_COMMAND) {
// Sample : 134,168,255
int red = msgString.substring(0, msgString.indexOf(',')).toInt();
int green = msgString.substring(msgString.indexOf(',') + 1, msgString.lastIndexOf(',')).toInt();
int blue = msgString.substring(msgString.lastIndexOf(',') + 1).toInt();
color=((red <<16)|(green <<8)|blue);
mqttSendColorState();
} else if (stopic == MQTT_LED_SPEED_COMMAND) {
speed = msgString.toInt();
mqttSendSpeedState();
}
}
void mqttSendState()
{
client.publish(MQTT_LED_STATE, (ledState) ? "ON": "OFF", true);
}
void mqttSendEffectState()
{
char buff[ledEffect.length() + 1];
ledEffect.toCharArray(buff, ledEffect.length() + 1);
client.publish(MQTT_LED_EFFECT_STATE, buff, true);
}
void mqttSendBrightnessState()
{
char buff[4];
itoa(brightness, buff, 10);
client.publish(MQTT_LED_BRIGHTNESS_STATE, buff, true);
}
void mqttSendSpeedState()
{
char buff[4];
itoa(speed, buff, 10);
client.publish(MQTT_LED_SPEED_STATE, buff, true);
}
void mqttSendColorState()
{
int red = color>>16 & 0xFF;
int green = color>>8 & 0xFF;
int blue = color & 0xFF;
char buff[12];
sprintf(buff, "%i,%i,%i", red, green, blue);
client.publish(MQTT_LED_COLOR_STATE, buff, true);
}
// LED
/**
* Coupe tout le strip de led.
*/
void ledBlackAll()
{
FastLED.clear();
FastLED.show();
}
/**
* Effet Cylon : défilement d'une simple led sur le strip aller/retour.
* Pour faire plus sympas on ajoute une lueur autour, avec une lumière atténué.
*/
void ledCylon()
{
for (int i = 0; i < LED_NUM; i++) {
client.loop();
if (ledEffect != LED_EFFECT_CYLON) {
return;
}
if ((i - 3) >= 0) {
leds[i - 3] = CRGB::Black;
}
if ((i - 2) >= 0) {
/*
* Se lit 128/256 d'intensité lumineuse actuelle
* https://github.com/FastLED/FastLED/wiki/Pixel-reference#dimming-and-brightening-colors
*/
leds[i - 2] = color;
leds[i - 2].fadeLightBy(220);
}
if ((i - 1) >= 0) {
leds[i - 1] = color;
leds[i - 1].fadeLightBy(200);
}
leds[i] = color;
if ((i + 1) <= LED_NUM) {
leds[i + 1] = color;
// Je suis volontairement un peu moins puissant sur l'avant
// pour donner un effet de trainée sur l'arrière
leds[i + 1].fadeLightBy(249);
}
FastLED.delay(1000 / speed);
}
// Il faut nettoyer certaines cases avant la prochaine loop
if ((LED_NUM - 2) >= 0) {
leds[LED_NUM - 2] = color;
leds[LED_NUM - 2].fadeLightBy(220);
}
if ((LED_NUM - 1) >= 0 ) {
leds[LED_NUM - 1] = CRGB::Black;
}
FastLED.show();
// led[0] et led[255] sont gérées par la loop précédante
for (int i = LED_NUM - 1; i >= 0; i--) {
client.loop();
if (ledEffect != LED_EFFECT_CYLON) {
return;
}
if ((i - 1) >= 0) {
leds[i - 1] = color;
leds[i - 1].fadeLightBy(249);
}
leds[i] = color;
if ((i + 1) <= LED_NUM) {
leds[i + 1] = color;
leds[i + 1].fadeLightBy(200);
}
if ((i + 2) <= LED_NUM) {
leds[i + 2] = color;
leds[i + 2].fadeLightBy(220);
}
if ((i + 3) <= LED_NUM) {
leds[i + 3] = CRGB::Black;
}
FastLED.delay(1000 / speed);
}
// Il faut nettoyer certaines cases avant la prochaine loop
if (1 <= LED_NUM) {
leds[1] = color;
leds[1].fadeLightBy(220);
}
if (2 <= LED_NUM) {
leds[2] = CRGB::Black;
}
FastLED.show();
}
/**
* Utilise pour indiquer une erreur sur la reception de l'effet.
*/
void ledError()
{
for (int i = 0; i < LED_NUM; i++) {
if ((i % 2) == 0) {
leds[i] = CRGB::Black;
} else {
leds[i] = CRGB::Red;
}
}
FastLED.delay(1000 / speed);
}
/**
* Affiche une couleur de manière uniforme sur le strip.
* Pour éviter un éclairage basique, on applique un breath qui permet
* de faire respirer la couleur (brightness).
*/
void ledFullColor()
{
// Source : http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
// Voic la version avec la gestion du speed, mais je ne suis pas convaincu
//float breath = (exp(sin(millis() / 2000.0 * map(speed, 0, 255, 50, 300)/100 * PI)) - 0.3678794) * 108.4;
float breath = (exp(sin(millis() / 4000.0 * PI)) - 0.3678794) * 108.4;
// J'ai essayé de mapper breath sur 3;brightness pour ne pas eteindre les leds,
// mais l'effet est plus saccadé
fill_solid(leds, LED_NUM, color);
FastLED.setBrightness(breath);
FastLED.show();
}
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
void ledColorPattern()
{
ChangePalettePeriodically();
static uint8_t startIndex = 0;
startIndex = startIndex + 1; /* motion speed */
FillLEDsFromPaletteColors(startIndex);
FastLED.delay(1000 / speed);
}
void FillLEDsFromPaletteColors(uint8_t colorIndex)
{
uint8_t brightness = 255;
for( int i = 0; i < LED_NUM; i++) {
leds[i] = ColorFromPalette(
currentPalette,
colorIndex,
brightness,
currentBlending
);
colorIndex += 3;
}
}
// There are several different palettes of colors demonstrated here.
//
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
//
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly. All are shown here.
void ChangePalettePeriodically()
{
uint8_t secondHand = (millis() / 1000) % 60;
static uint8_t lastSecond = 99;
if( lastSecond != secondHand) {
lastSecond = secondHand;
/*
if (secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; }
if (secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; }
if (secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; }
if (secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
*/
if (secondHand == 0) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 10) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
if (secondHand == 30) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
if (secondHand == 40) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
}
}
/*
// This function fills the palette with totally random colors.
void SetupTotallyRandomPalette()
{
for (int i = 0; i < 16; i++) {
currentPalette[i] = CHSV(random8(), 255, random8());
}
}
*/
// This function sets up a palette of black and white stripes,
// using code. Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
void SetupBlackAndWhiteStripedPalette()
{
// 'black out' all 16 palette entries...
fill_solid(currentPalette, 16, CRGB::Black);
// and set every fourth one to white.
currentPalette[0] = CRGB::White;
currentPalette[4] = CRGB::White;
currentPalette[8] = CRGB::White;
currentPalette[12] = CRGB::White;
}
// This function sets up a palette of purple and green stripes.
void SetupPurpleAndGreenPalette()
{
CRGB purple = CHSV(HUE_PURPLE, 255, 255);
CRGB green = CHSV(HUE_GREEN, 255, 255);
CRGB black = CRGB::Black;
currentPalette = CRGBPalette16(
green, green, black, black,
purple, purple, black, black,
green, green, black, black,
purple, purple, black, black
);
}
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
void colorTemp()
{
// draw a generic, no-name rainbow
static uint8_t starthue = 0;
fill_rainbow(leds + 5, LED_NUM - 5, --starthue, 20);
// Choose which 'color temperature' profile to enable.
uint8_t secs = (millis() / 1000) % (DISPLAYTIME * 2);
if (secs < DISPLAYTIME) {
FastLED.setTemperature(TEMPERATURE_1 ); // first temperature
leds[0] = TEMPERATURE_1; // show indicator pixel
} else {
FastLED.setTemperature(TEMPERATURE_2 ); // second temperature
leds[0] = TEMPERATURE_2; // show indicator pixel
}
// Black out the LEDs for a few secnds between color changes
// to let the eyes and brains adjust
if((secs % DISPLAYTIME) < BLACKTIME) {
memset8(leds, 0, LED_NUM * sizeof(CRGB));
}
FastLED.show();
FastLED.delay(8);
}
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
void fire()
{
// Array of temperature readings at each simulation cell
static byte heat[LED_NUM];
// Step 1. Cool down every cell a little
for (int i = 0; i < LED_NUM; i++) {
heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / LED_NUM) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k= LED_NUM - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if (random8() < SPARKING ) {
int y = random8(7);
heat[y] = qadd8(heat[y], random8(160,255));
}
// Step 4. Map from heat cells to LED colors
for (int j = 0; j < LED_NUM; j++) {
CRGB color = HeatColor( heat[j]);
int pixelnumber;
if (gReverseDirection) {
pixelnumber = (LED_NUM - 1) - j;
} else {
pixelnumber = j;
}
leds[pixelnumber] = color;
}
FastLED.delay(1000 / speed);
}
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
void loop() {
// MQTT
testConnectMQTT();
client.loop();
// LED
if (!ledState) {
FastLED.delay(1000);
} else {
if (ledEffect == LED_EFFECT_CYLON) {
ledCylon();
} else if (ledEffect == LED_EFFECT_FULLRED) {
ledFullColor();
} else if (ledEffect == LED_EFFECT_COLORPATTERN) {
ledColorPattern();
} else if (ledEffect == LED_EFFECT_COLORTEMP) {
colorTemp();
} else if (ledEffect == LED_EFFECT_FIRE) {
fire();
} else {
ledError();
}
}
}