commit
3f4db8a813
10
.gitignore
vendored
10
.gitignore
vendored
@ -1,6 +1,8 @@
|
||||
.vscode/*
|
||||
arduino/mqttfastledmenu/mqttfastledmenu.h
|
||||
arduino/.pioenvs
|
||||
arduino/.piolibdeps
|
||||
arduino/.clang_complete
|
||||
arduino/.gcc-flags.json
|
||||
.travis.yml
|
||||
lib/*
|
||||
.pioenvs
|
||||
.piolibdeps
|
||||
.clang_complete
|
||||
.gcc-flags.json
|
||||
|
||||
@ -1,17 +1,20 @@
|
||||
#include <Arduino.h>
|
||||
|
||||
#include "mqttfastledmenu.h"
|
||||
|
||||
// TODO : essayer, devrait limiter le flikering
|
||||
//#define FASTLED_ALLOW_INTERRUPTS 0
|
||||
#define FASTLED_ESP8266_NODEMCU_PIN_ORDER
|
||||
#include <FastLED.h>
|
||||
#include <ESP8266WiFi.h>
|
||||
#include <PubSubClient.h>
|
||||
|
||||
#include "mqttfastledmenu.h"
|
||||
|
||||
// LED
|
||||
int brightness = LED_BRIGHTNESS_DEFAULT;
|
||||
int color = LED_COLOR_DEFAULT;
|
||||
int speed = LED_SPEED_DEFAULT;
|
||||
CRGB leds[LED_NUM];
|
||||
String ledEffect = LED_EFFECT_CYLON;
|
||||
String ledEffect = LED_EFFECT_ERROR;
|
||||
boolean ledState = false;
|
||||
|
||||
// WIFI
|
||||
@ -21,6 +24,7 @@ WiFiClient espClient;
|
||||
char message_buff[100];
|
||||
PubSubClient client(espClient);
|
||||
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(SERIAL_SPEED);
|
||||
@ -33,8 +37,6 @@ void setup()
|
||||
client.setServer(MQTT_SERVER, MQTT_PORT);
|
||||
client.setCallback(callbackMQTT);
|
||||
testConnectMQTT();
|
||||
// TODO : ne marche pas comme je le désire :
|
||||
// au boot il prends les params par défaut, j'aimerais ceux de home assistant
|
||||
|
||||
// LED
|
||||
LEDS.addLeds<LED_CHIPSET,LED_PIN, LED_COLOR_ORDER>(leds, LED_NUM).setCorrection(TypicalSMD5050);
|
||||
@ -43,16 +45,21 @@ void setup()
|
||||
Serial.println("Ready");
|
||||
|
||||
/* MQTT
|
||||
* Il est important de faire un loop avant toute chose,
|
||||
* afin de récupérer les valeurs provenant du broker mqtt
|
||||
* et pas démarrer avec de vieilles infos.
|
||||
*/
|
||||
for (short int i = 0; i < 10; i++) {
|
||||
delay(200);
|
||||
client.loop();
|
||||
}
|
||||
* Il est important de faire un loop avant toute chose,
|
||||
* afin de récupérer les valeurs provenant du broker mqtt
|
||||
* et pas démarrer avec de vieilles infos.
|
||||
*/
|
||||
for (short int i = 0; i < 10; i++) {
|
||||
delay(200);
|
||||
client.loop();
|
||||
}
|
||||
|
||||
Serial.println("End of setup");
|
||||
//////////////////////////////// ColorPalette ///////////////////////////////
|
||||
currentPalette = RainbowColors_p;
|
||||
currentBlending = LINEARBLEND;
|
||||
//////////////////////////////// ColorPalette ///////////////////////////////
|
||||
|
||||
Serial.println("End of setup");
|
||||
}
|
||||
|
||||
// WIFI
|
||||
@ -122,7 +129,6 @@ void callbackMQTT(char* topic, byte* payload, unsigned int length)
|
||||
// Si on ne repasse pas tout à noir, cela peut faire des effets surprenants
|
||||
ledBlackAll();
|
||||
ledEffect = msgString;
|
||||
// TODO : a vraiment tester
|
||||
client.publish(MQTT_LED_EFFECT_STATE, message_buff, true);
|
||||
} else if (stopic == MQTT_LED_BRIGHTNESS_COMMAND) {
|
||||
brightness = msgString.toInt();
|
||||
@ -143,62 +149,288 @@ void callbackMQTT(char* topic, byte* payload, unsigned int length)
|
||||
}
|
||||
|
||||
// LED
|
||||
/**
|
||||
* Coupe tout le strip de led.
|
||||
*/
|
||||
void ledBlackAll()
|
||||
{
|
||||
FastLED.clear();
|
||||
FastLED.show();
|
||||
FastLED.clear();
|
||||
FastLED.show();
|
||||
}
|
||||
|
||||
/**
|
||||
* Effet Cylon : défilement d'une simple led sur le strip aller/retour.
|
||||
* Pour faire plus sympas on ajoute une lueur autour, avec une lumière atténué.
|
||||
*/
|
||||
void ledCylon()
|
||||
{
|
||||
// Effet cylon : on allume une led, on attends, on eteinds, on passe à la suivante
|
||||
for(int i = 0; i < LED_NUM; i++) {
|
||||
client.loop();
|
||||
if (ledEffect != LED_EFFECT_CYLON) {
|
||||
return;
|
||||
}
|
||||
for(int i = 0; i < LED_NUM; i++) {
|
||||
client.loop();
|
||||
|
||||
leds[i] = color;
|
||||
FastLED.delay(1000 / speed);
|
||||
leds[i] = CRGB::Black;
|
||||
FastLED.delay(1000 / speed);
|
||||
if (ledEffect != LED_EFFECT_CYLON) {
|
||||
return;
|
||||
}
|
||||
|
||||
for(int i = LED_NUM - 1; i > 0; i--) {
|
||||
client.loop();
|
||||
if (ledEffect != LED_EFFECT_CYLON) {
|
||||
return;
|
||||
}
|
||||
|
||||
leds[i] = color;
|
||||
FastLED.delay(1000 / speed);
|
||||
leds[i] = CRGB::Black;
|
||||
FastLED.show();
|
||||
if ((i - 3) >= 0) {
|
||||
leds[i - 3] = CRGB::Black;
|
||||
}
|
||||
if ((i - 2) >= 0) {
|
||||
/*
|
||||
* Se lit 128/256 d'intensité lumineuse actuelle
|
||||
* https://github.com/FastLED/FastLED/wiki/Pixel-reference#dimming-and-brightening-colors
|
||||
*/
|
||||
leds[i - 2].fadeLightBy(240);
|
||||
}
|
||||
if ((i - 1) >= 0) {
|
||||
leds[i - 1].fadeLightBy(200);
|
||||
}
|
||||
|
||||
leds[i] = color;
|
||||
|
||||
if ((i + 1) <= LED_NUM) {
|
||||
leds[i + 1] = color;
|
||||
// Je suis volontairement un peu moins puissant sur l'avant
|
||||
// pour donner un effet de trainée sur l'arrière
|
||||
leds[i + 1].fadeLightBy(220);
|
||||
}
|
||||
if ((i + 2) <= LED_NUM) {
|
||||
leds[i + 2] = color;
|
||||
leds[i + 2].fadeLightBy(240);
|
||||
}
|
||||
|
||||
FastLED.delay(1000 / speed);
|
||||
}
|
||||
|
||||
// led[0] et led[255] sont gérées par la loop précédante
|
||||
for(int i = LED_NUM - 1; i > 0; i--) {
|
||||
client.loop();
|
||||
|
||||
if (ledEffect != LED_EFFECT_CYLON) {
|
||||
return;
|
||||
}
|
||||
|
||||
if ((i - 2) >= 0) {
|
||||
leds[i - 2] = color;
|
||||
leds[i - 2].fadeLightBy(240);
|
||||
}
|
||||
if ((i - 1) >= 0) {
|
||||
leds[i - 1] = color;
|
||||
leds[i - 1].fadeLightBy(220);
|
||||
}
|
||||
|
||||
leds[i] = color;
|
||||
|
||||
if ((i + 1) <= LED_NUM) {
|
||||
leds[i + 1].fadeLightBy(200);
|
||||
}
|
||||
if ((i + 2) <= LED_NUM) {
|
||||
leds[i + 2].fadeLightBy(240);
|
||||
}
|
||||
if ((i + 3) <= LED_NUM) {
|
||||
leds[i + 3] = CRGB::Black;
|
||||
}
|
||||
|
||||
FastLED.delay(1000 / speed);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Utilise pour indiquer une erreur sur la reception de l'effet.
|
||||
*/
|
||||
void ledError()
|
||||
{
|
||||
for(int i = 0; i < LED_NUM; i++) {
|
||||
if ((i % 2) == 0) {
|
||||
leds[i] = CRGB::Black;
|
||||
} else {
|
||||
leds[i] = color;
|
||||
}
|
||||
for (int i = 0; i < LED_NUM; i++) {
|
||||
if ((i % 2) == 0) {
|
||||
leds[i] = CRGB::Black;
|
||||
} else {
|
||||
leds[i] = CRGB::Red;
|
||||
}
|
||||
}
|
||||
|
||||
FastLED.delay(1000 / speed);
|
||||
FastLED.delay(1000 / speed);
|
||||
}
|
||||
|
||||
/**
|
||||
* Affiche une couleur de manière uniforme sur le strip.
|
||||
* Pour éviter un éclairage basique, on applique un breath qui permet
|
||||
* de faire respirer la couleur (brightness).
|
||||
*/
|
||||
void ledFullColor()
|
||||
{
|
||||
fill_solid(leds, LED_NUM, color);
|
||||
int breath = (exp(sin(millis() / 2000.0 * PI)) - 0.36787944) * 108.4;
|
||||
FastLED.setBrightness(breath);
|
||||
FastLED.delay(100 / speed);
|
||||
fill_solid(leds, LED_NUM, color);
|
||||
// TODO : il fadrait pas faire 0 -> 255 mais plutot 20 (ou plus) -> brightness
|
||||
// Source : http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
|
||||
// Augmenter 2000 augmente la fréquence (c'est en fait sin((temps / 1000) * Pi/2)
|
||||
// 0.36787944 ?? censé correspondre au minimum
|
||||
// 108.4 ?? censé correspondre au maximum
|
||||
int breath = (exp(sin(millis() / 2000.0 * PI)) - 0.3678794) * 108.4;
|
||||
Serial.print(breath);
|
||||
Serial.println(" / 255");
|
||||
FastLED.setBrightness(breath);
|
||||
FastLED.delay(100 / speed);
|
||||
}
|
||||
|
||||
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
|
||||
void ledColorPattern()
|
||||
{
|
||||
ChangePalettePeriodically();
|
||||
|
||||
static uint8_t startIndex = 0;
|
||||
startIndex = startIndex + 1; /* motion speed */
|
||||
|
||||
FillLEDsFromPaletteColors(startIndex);
|
||||
|
||||
FastLED.delay(1000 / speed);
|
||||
}
|
||||
|
||||
void FillLEDsFromPaletteColors(uint8_t colorIndex)
|
||||
{
|
||||
uint8_t brightness = 255;
|
||||
|
||||
for( int i = 0; i < LED_NUM; i++) {
|
||||
leds[i] = ColorFromPalette(
|
||||
currentPalette,
|
||||
colorIndex,
|
||||
brightness,
|
||||
currentBlending
|
||||
);
|
||||
colorIndex += 3;
|
||||
}
|
||||
}
|
||||
|
||||
// There are several different palettes of colors demonstrated here.
|
||||
//
|
||||
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
|
||||
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
|
||||
//
|
||||
// Additionally, you can manually define your own color palettes, or you can write
|
||||
// code that creates color palettes on the fly. All are shown here.
|
||||
void ChangePalettePeriodically()
|
||||
{
|
||||
uint8_t secondHand = (millis() / 1000) % 60;
|
||||
static uint8_t lastSecond = 99;
|
||||
|
||||
if( lastSecond != secondHand) {
|
||||
lastSecond = secondHand;
|
||||
if (secondHand == 0) { currentPalette = RainbowColors_p; currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 10) { currentPalette = RainbowStripeColors_p; currentBlending = NOBLEND; }
|
||||
if (secondHand == 15) { currentPalette = RainbowStripeColors_p; currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 20) { SetupPurpleAndGreenPalette(); currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 25) { SetupTotallyRandomPalette(); currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 30) { SetupBlackAndWhiteStripedPalette(); currentBlending = NOBLEND; }
|
||||
if (secondHand == 35) { SetupBlackAndWhiteStripedPalette(); currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 40) { currentPalette = CloudColors_p; currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 45) { currentPalette = PartyColors_p; currentBlending = LINEARBLEND; }
|
||||
if (secondHand == 50) { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND; }
|
||||
if (secondHand == 55) { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }
|
||||
}
|
||||
}
|
||||
|
||||
// This function fills the palette with totally random colors.
|
||||
void SetupTotallyRandomPalette()
|
||||
{
|
||||
for (int i = 0; i < 16; i++) {
|
||||
currentPalette[i] = CHSV(random8(), 255, random8());
|
||||
}
|
||||
}
|
||||
|
||||
// This function sets up a palette of black and white stripes,
|
||||
// using code. Since the palette is effectively an array of
|
||||
// sixteen CRGB colors, the various fill_* functions can be used
|
||||
// to set them up.
|
||||
void SetupBlackAndWhiteStripedPalette()
|
||||
{
|
||||
// 'black out' all 16 palette entries...
|
||||
fill_solid(currentPalette, 16, CRGB::Black);
|
||||
// and set every fourth one to white.
|
||||
currentPalette[0] = CRGB::White;
|
||||
currentPalette[4] = CRGB::White;
|
||||
currentPalette[8] = CRGB::White;
|
||||
currentPalette[12] = CRGB::White;
|
||||
}
|
||||
|
||||
// This function sets up a palette of purple and green stripes.
|
||||
void SetupPurpleAndGreenPalette()
|
||||
{
|
||||
CRGB purple = CHSV(HUE_PURPLE, 255, 255);
|
||||
CRGB green = CHSV(HUE_GREEN, 255, 255);
|
||||
CRGB black = CRGB::Black;
|
||||
|
||||
currentPalette = CRGBPalette16(
|
||||
green, green, black, black,
|
||||
purple, purple, black, black,
|
||||
green, green, black, black,
|
||||
purple, purple, black, black
|
||||
);
|
||||
}
|
||||
///////////////////// FastLED-3.1.5/examples/ColorPalette /////////////////////
|
||||
|
||||
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
|
||||
void colorTemp()
|
||||
{
|
||||
// draw a generic, no-name rainbow
|
||||
static uint8_t starthue = 0;
|
||||
fill_rainbow(leds + 5, LED_NUM - 5, --starthue, 20);
|
||||
|
||||
// Choose which 'color temperature' profile to enable.
|
||||
uint8_t secs = (millis() / 1000) % (DISPLAYTIME * 2);
|
||||
if (secs < DISPLAYTIME) {
|
||||
FastLED.setTemperature(TEMPERATURE_1 ); // first temperature
|
||||
leds[0] = TEMPERATURE_1; // show indicator pixel
|
||||
} else {
|
||||
FastLED.setTemperature(TEMPERATURE_2 ); // second temperature
|
||||
leds[0] = TEMPERATURE_2; // show indicator pixel
|
||||
}
|
||||
|
||||
// Black out the LEDs for a few secnds between color changes
|
||||
// to let the eyes and brains adjust
|
||||
if((secs % DISPLAYTIME) < BLACKTIME) {
|
||||
memset8(leds, 0, LED_NUM * sizeof(CRGB));
|
||||
}
|
||||
|
||||
FastLED.show();
|
||||
FastLED.delay(8);
|
||||
}
|
||||
/////////////////// FastLED-3.1.5/examples/ColorTemperature ///////////////////
|
||||
|
||||
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
|
||||
void fire()
|
||||
{
|
||||
// Array of temperature readings at each simulation cell
|
||||
static byte heat[LED_NUM];
|
||||
|
||||
// Step 1. Cool down every cell a little
|
||||
for (int i = 0; i < LED_NUM; i++) {
|
||||
heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / LED_NUM) + 2));
|
||||
}
|
||||
|
||||
// Step 2. Heat from each cell drifts 'up' and diffuses a little
|
||||
for (int k= LED_NUM - 1; k >= 2; k--) {
|
||||
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
|
||||
}
|
||||
|
||||
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
|
||||
if (random8() < SPARKING ) {
|
||||
int y = random8(7);
|
||||
heat[y] = qadd8(heat[y], random8(160,255));
|
||||
}
|
||||
|
||||
// Step 4. Map from heat cells to LED colors
|
||||
for (int j = 0; j < LED_NUM; j++) {
|
||||
CRGB color = HeatColor( heat[j]);
|
||||
int pixelnumber;
|
||||
if (gReverseDirection) {
|
||||
pixelnumber = (LED_NUM - 1) - j;
|
||||
} else {
|
||||
pixelnumber = j;
|
||||
}
|
||||
leds[pixelnumber] = color;
|
||||
}
|
||||
|
||||
FastLED.delay(1000 / speed);
|
||||
}
|
||||
//////////////////////// FastLED-3.1.5/examples/Fire202 ///////////////////////
|
||||
|
||||
void loop() {
|
||||
// MQTT
|
||||
testConnectMQTT();
|
||||
@ -212,6 +444,12 @@ void loop() {
|
||||
ledCylon();
|
||||
} else if (ledEffect == LED_EFFECT_FULLRED) {
|
||||
ledFullColor();
|
||||
} else if (ledEffect == LED_EFFECT_COLORPATTERN) {
|
||||
ledColorPattern();
|
||||
} else if (ledEffect == LED_EFFECT_COLORTEMP) {
|
||||
colorTemp();
|
||||
} else if (ledEffect == LED_EFFECT_FIRE) {
|
||||
fire();
|
||||
} else {
|
||||
ledError();
|
||||
}
|
||||
|
||||
@ -10,6 +10,9 @@
|
||||
#define LED_COLOR_DEFAULT CRGB::Red
|
||||
|
||||
#define LED_EFFECT_CYLON "cylon"
|
||||
#define LED_EFFECT_COLORPATTERN "colorp"
|
||||
#define LED_EFFECT_COLORTEMP "colort"
|
||||
#define LED_EFFECT_FIRE "fire"
|
||||
#define LED_EFFECT_FULLRED "full"
|
||||
#define LED_EFFECT_ERROR "error"
|
||||
|
||||
@ -34,11 +37,6 @@
|
||||
#define MQTT_LED_COLOR_COMMAND "strip1/color/switch"
|
||||
#define MQTT_LED_COLOR_STATE "strip1/color/status"
|
||||
|
||||
// FastLED
|
||||
// TODO : essayer, devrait limiter le flikering
|
||||
//#define FASTLED_ALLOW_INTERRUPTS 0
|
||||
#define FASTLED_ESP8266_NODEMCU_PIN_ORDER
|
||||
|
||||
void setupWifi();
|
||||
void testConnectMQTT();
|
||||
void callbackMQTT(char* topic, byte* payload, unsigned int length);
|
||||
@ -46,3 +44,129 @@ void ledBlackAll();
|
||||
void ledCylon();
|
||||
void ledError();
|
||||
void ledFullColor();
|
||||
///////////////////////////////// ColorPalette
|
||||
// This example shows several ways to set up and use 'palettes' of colors
|
||||
// with FastLED.
|
||||
//
|
||||
// These compact palettes provide an easy way to re-colorize your
|
||||
// animation on the fly, quickly, easily, and with low overhead.
|
||||
//
|
||||
// USING palettes is MUCH simpler in practice than in theory, so first just
|
||||
// run this sketch, and watch the pretty lights as you then read through
|
||||
// the code. Although this sketch has eight (or more) different color schemes,
|
||||
// the entire sketch compiles down to about 6.5K on AVR.
|
||||
//
|
||||
// FastLED provides a few pre-configured color palettes, and makes it
|
||||
// extremely easy to make up your own color schemes with palettes.
|
||||
//
|
||||
// Some notes on the more abstract 'theory and practice' of
|
||||
// FastLED compact palettes are at the bottom of this file.
|
||||
CRGBPalette16 currentPalette;
|
||||
TBlendType currentBlending;
|
||||
|
||||
extern CRGBPalette16 myRedWhiteBluePalette;
|
||||
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;
|
||||
|
||||
// This example shows how to set up a static color palette
|
||||
// which is stored in PROGMEM (flash), which is almost always more
|
||||
// plentiful than RAM. A static PROGMEM palette like this
|
||||
// takes up 64 bytes of flash.
|
||||
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM =
|
||||
{
|
||||
CRGB::Red,
|
||||
CRGB::Gray, // 'white' is too bright compared to red and blue
|
||||
CRGB::Blue,
|
||||
CRGB::Black,
|
||||
|
||||
CRGB::Red,
|
||||
CRGB::Gray,
|
||||
CRGB::Blue,
|
||||
CRGB::Black,
|
||||
|
||||
CRGB::Red,
|
||||
CRGB::Red,
|
||||
CRGB::Gray,
|
||||
CRGB::Gray,
|
||||
CRGB::Blue,
|
||||
CRGB::Blue,
|
||||
CRGB::Black,
|
||||
CRGB::Black
|
||||
};
|
||||
|
||||
void ledColorPattern();
|
||||
void FillLEDsFromPaletteColors(uint8_t colorIndex);
|
||||
void ChangePalettePeriodically();
|
||||
void SetupTotallyRandomPalette();
|
||||
void SetupBlackAndWhiteStripedPalette();
|
||||
void SetupPurpleAndGreenPalette();
|
||||
//////////////////////////////////////////////// ColorTemperature
|
||||
// THIS EXAMPLE demonstrates the second, "color temperature" control.
|
||||
// It shows a simple rainbow animation first with one temperature profile,
|
||||
// and a few seconds later, with a different temperature profile.
|
||||
//
|
||||
// The first pixel of the strip will show the color temperature.
|
||||
//
|
||||
// HELPFUL HINTS for "seeing" the effect in this demo:
|
||||
// * Don't look directly at the LED pixels. Shine the LEDs aganst
|
||||
// a white wall, table, or piece of paper, and look at the reflected light.
|
||||
//
|
||||
// * If you watch it for a bit, and then walk away, and then come back
|
||||
// to it, you'll probably be able to "see" whether it's currently using
|
||||
// the 'redder' or the 'bluer' temperature profile, even not counting
|
||||
// the lowest 'indicator' pixel.
|
||||
//
|
||||
//
|
||||
// FastLED provides these pre-conigured incandescent color profiles:
|
||||
// Candle, Tungsten40W, Tungsten100W, Halogen, CarbonArc,
|
||||
// HighNoonSun, DirectSunlight, OvercastSky, ClearBlueSky,
|
||||
// FastLED provides these pre-configured gaseous-light color profiles:
|
||||
// WarmFluorescent, StandardFluorescent, CoolWhiteFluorescent,
|
||||
// FullSpectrumFluorescent, GrowLightFluorescent, BlackLightFluorescent,
|
||||
// MercuryVapor, SodiumVapor, MetalHalide, HighPressureSodium,
|
||||
// FastLED also provides an "Uncorrected temperature" profile
|
||||
// UncorrectedTemperature;
|
||||
|
||||
#define TEMPERATURE_1 Tungsten100W
|
||||
#define TEMPERATURE_2 OvercastSky
|
||||
// How many seconds to show each temperature before switching
|
||||
#define DISPLAYTIME 20
|
||||
// How many seconds to show black between switches
|
||||
#define BLACKTIME 3
|
||||
void colorTemp();
|
||||
///////////////////////////////////////////////Fire202
|
||||
bool gReverseDirection = false;
|
||||
// This basic one-dimensional 'fire' simulation works roughly as follows:
|
||||
// There's a underlying array of 'heat' cells, that model the temperature
|
||||
// at each point along the line. Every cycle through the simulation,
|
||||
// four steps are performed:
|
||||
// 1) All cells cool down a little bit, losing heat to the air
|
||||
// 2) The heat from each cell drifts 'up' and diffuses a little
|
||||
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
|
||||
// 4) The heat from each cell is rendered as a color into the leds array
|
||||
// The heat-to-color mapping uses a black-body radiation approximation.
|
||||
//
|
||||
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
|
||||
//
|
||||
// This simulation scales it self a bit depending on NUM_LEDS; it should look
|
||||
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
|
||||
//
|
||||
// I recommend running this simulation at anywhere from 30-100 frames per second,
|
||||
// meaning an interframe delay of about 10-35 milliseconds.
|
||||
//
|
||||
// Looks best on a high-density LED setup (60+ pixels/meter).
|
||||
//
|
||||
//
|
||||
// There are two main parameters you can play with to control the look and
|
||||
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
|
||||
// in step 3 above).
|
||||
//
|
||||
// COOLING: How much does the air cool as it rises?
|
||||
// Less cooling = taller flames. More cooling = shorter flames.
|
||||
// Default 50, suggested range 20-100
|
||||
#define COOLING 55
|
||||
|
||||
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
|
||||
// Higher chance = more roaring fire. Lower chance = more flickery fire.
|
||||
// Default 120, suggested range 50-200.
|
||||
#define SPARKING 120
|
||||
void fire();
|
||||
|
||||
@ -5,12 +5,16 @@ mqtt:
|
||||
username: "XXX"
|
||||
password: "XXX"
|
||||
|
||||
# TODO : idéee ! préfixé les functions d'un nombre qu'on sort lors du publish, cela permet de n'avoir que des id
|
||||
input_select:
|
||||
strip1_effect:
|
||||
name: "Choix de l'effet"
|
||||
options:
|
||||
- "cylon"
|
||||
- "full"
|
||||
- "colorp"
|
||||
- "colort"
|
||||
- "fire"
|
||||
- "error"
|
||||
|
||||
input_slider:
|
||||
|
||||
@ -14,5 +14,5 @@ board=nodemcuv2
|
||||
framework=arduino
|
||||
|
||||
[platformio]
|
||||
src_dir=mqttfastledmenu
|
||||
src_dir=arduino/mqttfastledmenu
|
||||
lib_dir=/home/jcabillot/Arduino/libraries
|
||||
Loading…
x
Reference in New Issue
Block a user